Skip to main content
Log in

Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L−1 and 500 mg L−1, respectively. The degradation percentages under O3 and UV conditions reached 98–100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Ahammad NA, Ahmad MA, Hameed BH, Mohd Din AT (2022) A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-19829-0

  • Anirudhan TS, Christa J, Shainy F (2020) Magnetic titanium dioxide embedded molecularly imprinted polymer nanocomposite for the degradation of diuron under visible light. React Funct Polym 152:104597

    Article  CAS  Google Scholar 

  • Araujo FG, Bauerfeldt GF, Cid YP (2018) Nonylphenol: properties, legislation, toxicity and determination. An Acad Bras Ciencias 90:1903–1918

    Article  Google Scholar 

  • Aravind kumar J, Krithiga T, Sathish S, Renita AA, Prabu D, Lokesh S, Geetha R, Namasivayam SKR, Sillanpaa M (2022) Persistent organic pollutants in water resources: fate, occurrence, characterization and risk analysis. Sci Total Environ 831:154808

    Article  CAS  Google Scholar 

  • Arlos MJ, Parker WJ, Bicudo JR, Law P, Hicks KA, Fuzzen MLM, Andrews SA, Servos MR (2018) Modeling the exposure of wild fish to endocrine active chemicals: potential linkages of total estrogenicity to field-observed intersex. Water Res 139:187–197

    Article  CAS  Google Scholar 

  • Azizi A, Bottaro CS (2020) A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 1614:460603

    Article  CAS  Google Scholar 

  • Bader H (1982) Determination of ozone in water by the indigo method: a submitted standard method. Ozone: Sci Eng 4(4):169–176. https://doi.org/10.1080/01919518208550955

  • Baltazar Estrada-Arriaga E, Cortes-Munoz JE, Gonzalez-Herrera A, Calderon-Molgora CG, Rivera-Huerta MD, Ramirez-Camperos E, Montellano-Palacios L, Gelover-Santiago SL, Perez-Castrejon S, Cardoso-Vigueros L, Martin-Dominguez A, Garcia-Sanchez L (2016) Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Sci Total Environ 571:1172–1182

    Article  Google Scholar 

  • Bhandari G, Bagheri AR, Bhatt P, Bilal M (2021) Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere 275:130013

    Article  CAS  Google Scholar 

  • Bi YJ, Li WY, Yuan C, Wang BS (2013) Synthesis of molecularly imprinted polymers for the binding and recognition of nonylphenol. Adv Mater Res 641:55–59 (Trans Tech Publ)

    Article  Google Scholar 

  • Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353

    Article  CAS  Google Scholar 

  • Bina B, Mohammadi F, Amin MM, Pourzamani HR, Yavari Z (2018) Determination of 4-nonylphenol and 4-tert-octylphenol compounds in various types of wastewater and their removal rates in different treatment processes in nine wastewater treatment plants of Iran. Chin J Chem Eng 26:183–190

    Article  CAS  Google Scholar 

  • Björklund K, Bondelind M, Karlsson A, Karlsson D, Sokolova E (2018) Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: benzo(a)pyrene and copper risks to recreational water. J Environ Manage 207:32–42

    Article  Google Scholar 

  • Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J (2022) Accurate removal of toxic organic pollutants from complex water matrices. Environ Sci Technol 56:2917–2935

    Article  CAS  Google Scholar 

  • Cervantes-Uc JM, Cauich-Rodríguez JV, Vázquez-Torres H, Licea-Claveríe A (2006) TGA/FTIR study on thermal degradation of polymethacrylates containing carboxylic groups. Polym Degrad Stab 91:3312–3321

    Article  CAS  Google Scholar 

  • Chawla I, Karthikeyan L, Mishra AK (2020) A review of remote sensing applications for water security: quantity, quality, and extremes. J Hydrol 585:124826

    Article  CAS  Google Scholar 

  • Chen F-Y, Ba S-P, Tang Y-B, Wang X-G (2015) Preparation and characterization of nonylphenol magnetic molecularly imprinted polymer. J Chem Soc Pak 37(06):1143–1152

  • Cheng Y, Shan Z, Zhou J, Bu Y, Li P, Lu S (2017) Effects of 4-nonylphenol in drinking water on the reproductive capacity of Japanese quails (Coturnix japonica). Chemosphere 175:219–227

    Article  CAS  Google Scholar 

  • Chub OV, Saadatkhah N, Dubois J-L, Patience GS (2022) Fluidized bed poly(methyl methacrylate) thermolysis to methyl methacrylate followed by catalytic hydrolysis to methacrylic acid. Appl Catal A: Gen 638:118637

    Article  CAS  Google Scholar 

  • Crini G, Cosentino C, Bradu C, Fourmentin M, Torri G, Ruzimuradov O, Alaton IA, Tomei MC, Derco J, Barhoumi M, Prosen H, Malinović BN, Vrabeľ M, Huq MM, Soltan J, Lichtfouse E, Morin-Crini N (2022) Innovative technologies to remove alkylphenols from wastewater: a review. Environ Chem Lett 20:2597–2628

    Article  CAS  Google Scholar 

  • Dai C-m, Geissen S-U, Zhang Y-l, Zhang Y-j, Zhou X-f (2011) Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. Environ Pollut 159:1660–1666

    Article  CAS  Google Scholar 

  • De La Fuente L, Acosta T, Babay P, Curutchet G, Candal R, Litter MI (2010) Degradation of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation technologies. Ind Eng Chem Res 49:6909–6915

    Article  Google Scholar 

  • de Leon-Martinez LD, Rodriguez-Aguilar M, Ocampo-Perez R, Gutierrez-Hernandez JM, Diaz-Barriga F, Batres-Esquivel L, Flores-Ramirez R (2018) Synthesis and evaluation of a molecularly imprinted polymer for the determination of metronidazole in water samples. Bull Environ Contam Toxicol 100:395–401

    Article  Google Scholar 

  • de Leon-Martinez LD, Melendez-Marmolejo J, Vargas-Berrones K, Flores-Ramirez R (2020) Synthesis and evaluation of molecularly imprinted polymers for the determination of di(2-ethylhexyl) phthalate (DEHP) in water samples. Bull Environ Contam Toxicol 105:806–812

    Article  Google Scholar 

  • De Weert J, Viñas M, Grotenhuis T, Rijnaarts H, Langenhoff A (2010) Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments. Appl Microbiol Biotechnol 86:761–771

    Article  Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    Article  CAS  Google Scholar 

  • Decompte E, Lobaz V, Monperrus M, Deniau E, Save M (2020) Molecularly imprinted polymer colloids synthesized by miniemulsion polymerization for recognition and separation of nonylphenol. ACS Appl Polym Mater 2:3543–3556

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M (2004) From renewable vegetables resources to microorganisms: new trends in surfactants. C R Chim 7(6–7):641–646. https://doi.org/10.1016/j.crci.2004.04.002. https://www.sciencedirect.com/science/article/pii/S1631074804001146

  • Dima S-O, Meouche W, Dobre T, Nicolescu T-V, Sarbu A (2013) Diosgenin-selective molecularly imprinted pearls prepared by wet phase inversion. React Funct Polym 73:1188–1197

    Article  CAS  Google Scholar 

  • Duan F, Chen C, Zhao X, Yang Y, Liu X, Qin Y (2016) Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environ Sci Nano 3:213–222

    Article  CAS  Google Scholar 

  • Felis E, Miksch K (2015) Nonylphenols degradation in the UV, UV/H2O2, O3 and UV/O3 processes–comparison of the methods and kinetic study. Water Sci Technol 71:446–453

    Article  CAS  Google Scholar 

  • Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454–455:109–118

    Article  Google Scholar 

  • Ferrara F, Ademollo N, Orrù MA, Silvestroni L, Funari E (2011) Alkylphenols in adipose tissues of Italian population. Chemosphere 82:1044–1049

    Article  CAS  Google Scholar 

  • Forte M, Di Lorenzo M, Carrizzo A, Valiante S, Vecchione C, Laforgia V, De Falco M (2016) Nonylphenol effects on human prostate non tumorigenic cells. Toxicology 357–358:21–32

    Article  Google Scholar 

  • Fresco-Cala B, Batista AD, Cárdenas S (2020) Molecularly imprinted polymer micro- and nano-particles: a review. Molecules 25:4740

    Article  CAS  Google Scholar 

  • Gao D, Li Z, Guan J, Liang H (2017) Seasonal variations in the concentration and removal of nonylphenol ethoxylates from the wastewater of a sewage treatment plant. J Environ Sci 54:217–223

    Article  CAS  Google Scholar 

  • Guan S-H, Zhao K-F, Tong Q, Rao Q-X, Cheng L, Song W, Zhang Q-C, Wang X-L, Song W-G (2021) A review of photocatalytic materials application on nonylphenol degradation. Environ Chall 4:100172

    Article  CAS  Google Scholar 

  • Guerreiro A, Soares A, Piletska E, Mattiasson B, Piletsky S (2008) Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples. Anal Chim Acta 612:99–104

    Article  CAS  Google Scholar 

  • Guo W, Hu W, Pan J, Zhou H, Guan W, Wang X, Dai J, Xu L (2011) Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites. Chem Eng J 171:603–611

    Article  CAS  Google Scholar 

  • Hajizadeh S, Kirsebom H, Galaev IY, Mattiasson B (2010) Evaluation of selective composite cryogel for bromate removal from drinking water. J Sep Sci 33:1752–1759

    Article  CAS  Google Scholar 

  • Hong Y, Feng C, Yan Z, Wang Y, Liu D, Liao W, Bai Y (2020) Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environ Chem Lett 18:2095–2106

    Article  CAS  Google Scholar 

  • Huang M, Zhou T, Wu X, Mao J (2015) Adsorption and degradation of norfloxacin by a novel molecular imprinting magnetic Fenton-like catalyst. Chin J Chem Eng 23:1698–1704

    Article  CAS  Google Scholar 

  • Hussain S, Khan S, Gul S, Pividori MI, Del Pilar Taboada Sotomayor M (2016) A novel core@shell magnetic molecular imprinted nanoparticles for selective determination of folic acid in different food samples. React Funct Polym 106:51–56

    Article  CAS  Google Scholar 

  • Karci A, Arslan-Alaton I, Bekbolet M (2013) Advanced oxidation of a commercially important nonionic surfactant: investigation of degradation products and toxicity. J Hazard Mater 263:275–282

    Article  CAS  Google Scholar 

  • Khan S, Hussain S, Wong A, Foguel MV, Moreira Gonçalves L, Pividori Gurgo MI, Taboada Sotomayor MdP (2018) Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React Funct Polym 122:175–182

    Article  CAS  Google Scholar 

  • Krupadam RJ, Khan MS, Wate SR (2010) Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Res 44:681–688

    Article  CAS  Google Scholar 

  • Kuzin I, Loskutov I (1996) Zh. Prikl. Khim. J Appl Chem URSS 39:100–104

    Google Scholar 

  • Le T-M-T, Truong T-N-S, Nguyen P-D, Le Q-D-T, Tran Q-V, Le T-T, Nguyen Q-H, Kieu-Le T-C, Strady E (2023) Evaluation of microplastic removal efficiency of wastewater-treatment plants in a developing country, Vietnam. Environ Technol Innov 29:102994

    Article  CAS  Google Scholar 

  • Lenz K, Beck V, Fuerhacker M (2004) Behaviour of bisphenol A (BPA), 4-nonylphenol (4-NP) and 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) in oxidative water treatment processes. Water Sci Technol : J Int Assoc Water Pollut Res 50:141–147

    Article  CAS  Google Scholar 

  • Lenz K, Beck V, Fuerhacker M (2004) Behaviour of bisphenol A (BPA), 4-nonylphenol (4-NP) and 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) in oxidative water treatment processes. Water Sci Technol 50:141–147

    Article  CAS  Google Scholar 

  • Li Y, Duan X, Li X, Zhang D (2013) Photodegradation of nonylphenol by simulated sunlight. Mar Pollut Bull 66:47–52

    Article  CAS  Google Scholar 

  • Liang H, Tai X, Du Z (2020) Photocatalytic degradation of nonylphenol ethoxylate and its degradation mechanism. J Mol Liq 302:112567

    Article  CAS  Google Scholar 

  • Lin H, Liu H, Li Y, Kong X (2021) Thermal stability, pore structure and moisture adsorption property of phosphate acid-activated metakaolin geopolymer. Mater Lett 301:130226

    Article  CAS  Google Scholar 

  • Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) LC–MS–MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66:690–699

    Article  CAS  Google Scholar 

  • Loyo-Rosales JE, Rice CP, Torrents A (2007) Fate of octyl- and nonylphenol ethoxylates and some carboxylated derivatives in three American wastewater treatment plants. Environ Sci Technol 41:6815–6821

    Article  CAS  Google Scholar 

  • Luo X, Zhan Y, Huang Y, Yang L, Tu X, Luo S (2011) Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. J Hazard Mater 187:274–282

    Article  CAS  Google Scholar 

  • Lv Y-K, Wang L-M, Yang L, Zhao C-X, Sun H-W (2012) Synthesis and application of molecularly imprinted poly(methacrylic acid)–silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A 1227:48–53

    Article  CAS  Google Scholar 

  • Manivannan B, Nallathambi G, Devasena T (2022) Alternative methods of monitoring emerging contaminants in water: a review. Environ Sci Process Impacts 24:2009–2031

    Article  CAS  Google Scholar 

  • Meléndez-Marmolejo J, Díaz de León-Martínez L, Galván-Romero V, Villarreal-Lucio S, Ocampo-Pérez R, Medellín-Castillo NA, Padilla-Ortega E, Rodríguez-Torres I, Flores-Ramírez R (2022) Design and application of molecularly imprinted polymers for adsorption and environmental assessment of anti-inflammatory drugs in wastewater samples. Environ Sci Pollut Res 29:45885–45902

    Article  Google Scholar 

  • Meng Z, Zhang Q, Xue M, Wang D, Wang A (2012) Removal of 2,4,6-trinitrotoluene from “pink water” using molecularly-imprinted absorbent. Propellants Explos Pyrotech 37:100–106

    Article  CAS  Google Scholar 

  • Mtibaà R, Ezzanad A, Aranda E, Pozo C, Ghariani B, Moraga J, Nasri M, Manuel Cantoral J, Garrido C, Mechichi T (2020) Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: identification of fungal metabolites and proposal of a putative pathway. Sci Total Environ 708:135129

    Article  Google Scholar 

  • Müller A, Österlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: a review of sources. Sci Total Environ 709:136125

    Article  Google Scholar 

  • Murray A, Örmeci B (2012) Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review. Environ Sci Pollut Res 19:3820–3830

    Article  CAS  Google Scholar 

  • Naidu R, Arias Espana VA, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357

    Article  CAS  Google Scholar 

  • Nguyen P-D, Le T-M-T, Vo T-K-Q, Nguyen P-T, Vo T-D-H, Dang B-T, Son N-T, Nguyen DD, Bui X-T (2021) Submerged membrane filtration process coupled with powdered activated carbon for nonylphenol ethoxylates removal. Water Sci Technol 84:1793–1803

    Article  Google Scholar 

  • Núñez L, Turiel E, Martín-Esteban A, Tadeo JL (2008) Molecularly imprinted polymer for selective extraction of endocrine disrupters nonylphenol and its ethoxylated derivates from environmental solids. J Sep Sci 31:2492–2499

    Article  Google Scholar 

  • Omrani M, Ruban V, Ruban G, Lamprea K (2017) Assessment of atmospheric trace metal deposition in urban environments using direct and indirect measurement methodology and contributions from wet and dry depositions. Atmos Environ 168:101–111

    Article  CAS  Google Scholar 

  • P SP, K M, A J, S S (2022) Chapter 9 - Endocrine-disrupting pollutants in domestic and industrial wastewater: occurrence and removal by advanced treatment system for wastewater reuse. In: Haq I, Kalamdhad AS, Shah MP (eds) Biodegradation and detoxification of micropollutants in industrial wastewater. Elsevier, pp 177–192

    Chapter  Google Scholar 

  • Pan Y, Zhang X (2013) Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water. Environ Sci Technol 47:1265–1273

    Article  CAS  Google Scholar 

  • Pardeshi S, Singh SK (2016) Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. Rsc Adv 6:23525–23536

    Article  CAS  Google Scholar 

  • Patino-Garcia D, Cruz-Fernandes L, Bunay J, Palomino J, Moreno RD (2018) Reproductive alterations in chronically exposed female mice to environmentally relevant doses of a mixture of phthalates and alkylphenols. Endocrinology 159:1050–1061

    Article  CAS  Google Scholar 

  • Perron MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111:520–529

    Article  CAS  Google Scholar 

  • Petrovic M, Gehringer P, Eschweiler H, Barcelo D (2004) LC-MS-(MS) determination of oxidative degradation products of nonylphenol ethoxylates, carboxylates and nonylphenols in water. Water Sci Technol 50:227–234

    Article  CAS  Google Scholar 

  • Petrucci G, Gromaire M-C, Shorshani MF, Chebbo G (2014) Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis. Environ Sci Pollut Res 21:10225–10242

    Article  CAS  Google Scholar 

  • Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes – a review. J Membr Sci 157:263–278

    Article  CAS  Google Scholar 

  • Piletsky SA, Alcock S, Turner APF (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 19:9–12

    Article  CAS  Google Scholar 

  • Qiu L, Dong Z, Sun H, Li H, Chang CC (2016) Emerging pollutants - part I: occurrence, fate and transport. Water Environ Res : Res Publ Water Environ Fed 88:1855–1875

    Article  Google Scholar 

  • Quiroga J, Garrido M, Romero Garcia L, Márquez D, Perales J (2019) Assessment of the biodegradability and ecotoxicty of a nonylphenol ethoxylate surfactant in littoral waters. Int J Environ Sci Dev 10:130–136

    Article  CAS  Google Scholar 

  • Rao W, Cai R, Yin Y, Long F, Zhang Z (2014) Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples. Talanta 128:170–176

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  Google Scholar 

  • Rekhate CV, Srivastava JK (2020) Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- a review. Chem Eng J Adv 3:100031

    Article  CAS  Google Scholar 

  • Remucal CK, Salhi E, Walpen N, von Gunten U (2020) Molecular-level transformation of dissolved organic matter during oxidation by ozone and hydroxyl radical. Environ Sci Technol 54:10351–10360

    Article  CAS  Google Scholar 

  • Research DBM (2020) Global Nonylphenol Ethoxylates Market – Industry Trends and Forecast to 2027. https://www.databridgemarketresearch.com/reports/global-nonylphenol-ethoxylates-market

  • Sanganyado E (2022) Chapter 19 - Policies and regulations for the emerging pollutants in freshwater ecosystems: challenges and opportunities. In: Dalu T, Tavengwa NT (eds) Emerging freshwater pollutants. Elsevier, pp 361–372

    Chapter  Google Scholar 

  • Saravanan M, Nam S-E, Eom H-J, Lee D-H, Rhee J-S (2019) Long-term exposure to waterborne nonylphenol alters reproductive physiological parameters in economically important marine fish. Comp Biochem Physiol Part C: Toxicol Pharmacol 216:10–18

    CAS  Google Scholar 

  • Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Harikumar P, Priyanka G, Devakirubai DRA (2022) A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci Total Environ 812:152456

    Article  CAS  Google Scholar 

  • Sengupta A, Jebur M, Kamaz M, Wickramasinghe SR (2022) Removal of emerging contaminants from wastewater streams using membrane bioreactors: a review. Membranes 12:60

    Article  CAS  Google Scholar 

  • Shao B, Hu J, Yang M, An W, Tao S (2005) Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Arch Environ Contam Toxicol 48:467–473

    Article  CAS  Google Scholar 

  • Shirdel I, Kalbassi MR, Esmaeilbeigi M, Tinoush B (2020) Disruptive effects of nonylphenol on reproductive hormones, antioxidant enzymes, and histology of liver, kidney and gonads in Caspian trout smolts. Comp Biochem Physiol Part C: Toxicol Pharmacol 232:108756

    CAS  Google Scholar 

  • Silva A, de Oliveira CD, Quirino A, Silva F, Saraiva R, Silva-Cavalcanti J (2018) Endocrine disruptors in aquatic environment: effects and consequences on the biodiversity of fish and amphibian species. Aquat Sci Technol 6:35

    Article  Google Scholar 

  • Souza MCO, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa F (2022) Legacy and emerging pollutants in Latin America: a critical review of occurrence and levels in environmental and food samples. Sci Total Environ 848:157774

    Article  CAS  Google Scholar 

  • Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213

    Article  CAS  Google Scholar 

  • Svenson J, Nicholls IA (2001) On the thermal and chemical stability of molecularly imprinted polymers. Anal Chim Acta 435:19–24

    Article  CAS  Google Scholar 

  • Tabaraki R, Sadeghinejad N (2020) Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chem Pap 74:1937–1944

    Article  CAS  Google Scholar 

  • Tran NH, Reinhard M, Khan E, Chen H, Nguyen VT, Li Y, Goh SG, Nguyen QB, Saeidi N, Gin KY-H (2019) Emerging contaminants in wastewater, stormwater runoff, and surface water: application as chemical markers for diffuse sources. Sci Total Environ 676:252–267

    Article  CAS  Google Scholar 

  • Uguz C, Varisli O, Agca C, Evans T, Agca Y (2015) In vitro effects of nonylphenol on motility, mitochondrial, acrosomal and chromatin integrity of ram and boar spermatozoa. Andrologia 47:910–919

    CAS  Google Scholar 

  • Van Zijl MC, Aneck-Hahn NH, Swart P, Hayward S, Genthe B, De Jager C (2017) Estrogenic activity, chemical levels and health risk assessment of municipal distribution point water from Pretoria and Cape Town, South Africa. Chemosphere 186:305–313

    Article  Google Scholar 

  • Varga L, Szigeti J (2016) Use of ozone in the dairy industry: a review. Int J Dairy Technol 69:157–168

    Article  CAS  Google Scholar 

  • Vargas-Berrones K, Bernal-Jacome L, Diaz de Leon-Martinez L, Flores-Ramirez R (2020) Emerging pollutants (EPs) in Latin America: a critical review of under-studied EPs, case of study -nonylphenol. Sci Total Environ 726:138493

    Article  CAS  Google Scholar 

  • Vargas-Berrones K, Bernal-Jácome L, Díaz de León-Martínez L, Flores-Ramírez R (2020) Emerging pollutants (EPs) in Latin América: a critical review of under-studied EPs, case of study -nonylphenol. Sci Total Environ 726:138493

    Article  CAS  Google Scholar 

  • Varjani S, Joshi R, Srivastava VK, Ngo HH, Guo W (2020) Treatment of wastewater from petroleum industry: current practices and perspectives. Environ Sci Pollut Res 27:27172–27180

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Marquez-Rocha F, Ponce Rivas E, Licea A, Mt V (2005) Nonylphenol, an integrated vision of a pollutant. Scientific review. Appl Ecol Environ Res 4:1–25

    Article  Google Scholar 

  • Vieira WT, de Farias MB, Spaolonzi MP, da Silva MGC, Vieira MGA (2021) Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media – a critical report. J Environ Chem Eng 9:105748

    Article  CAS  Google Scholar 

  • Vilela CLS, Bassin JP, Peixoto RS (2018) Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection. Environ Pollut 235:546–559

    Article  CAS  Google Scholar 

  • Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R (2022) Molecularly imprinted polymers for environmental adsorption applications. Environ Sci Pollut Res 29:89923–89942

    Article  CAS  Google Scholar 

  • Viveiros R, Rebocho S, Casimiro T (2018) Green strategies for molecularly imprinted polymer development. Polymers 10:306

    Article  Google Scholar 

  • von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kuhne R, Ebert RU, Ginebreda A, De Cooman W, Schuurmann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409:2064–2077

    Article  Google Scholar 

  • Wang J, Zhuan R (2020) Degradation of antibiotics by advanced oxidation processes: an overview. Sci Total Environ 701:135023

    Article  CAS  Google Scholar 

  • Wong A, de Oliveira FM, Tarley CRT, Del Pilar Taboada Sotomayor M (2016) Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron. React Funct Polym 100:26–36

    Article  CAS  Google Scholar 

  • Wu LQ, Zhu KC, Zhao WP, Li YZ (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal Chim Acta 549:39–44

    Article  CAS  Google Scholar 

  • Xie X, Ma X, Guo L, Fan Y, Zeng G, Zhang M et al (2019) Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J 357:56–65

    Article  CAS  Google Scholar 

  • Xie Y, Wan J, Yan Z, Wang Y, Xiao T, Hou J, Chen H (2022) Targeted degradation of sulfamethoxazole in wastewater by molecularly imprinted MOFs in advanced oxidation processes: degradation pathways and mechanism. Chem Eng J 429:132237

    Article  CAS  Google Scholar 

  • Yang Y, Shen X (2022) Preparation and application of molecularly imprinted polymers for flavonoids: review and perspective. Molecules 27:7355

    Article  CAS  Google Scholar 

  • Yoshikawa M, Tharpa K, Dima Ş-O (2016) Molecularly imprinted membranes: past, present, and future. Chem Rev 116:11500–11528

    Article  CAS  Google Scholar 

  • Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584:112–121

    Article  CAS  Google Scholar 

  • Yu M, Li H, Xie J, Xu Y, Lu X (2022) A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 236:122875

    Article  CAS  Google Scholar 

  • Yuan Z, Liu Y, An F (2011) Preparation and phenol-recognizing ability of a poly(methacrylic acid) molecular imprint on the surface of a silica gel. Microchim Acta 172:89–94

    Article  CAS  Google Scholar 

  • Zeng X, Yu T, Wang P, Yuan R, Wen Q, Fan Y, Wang C, Shi R (2010) Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water. J Hazard Mater 177:773–780

    Article  CAS  Google Scholar 

  • Zhang W, Qin L, He X-W, Li W-Y, Zhang Y-K (2009) Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J Chromatogr A 1216:4560–4567

    Article  CAS  Google Scholar 

  • Zhang X, He W, Ren L, Stager J, Evans PJ, Logan BE (2015) COD removal characteristics in air-cathode microbial fuel cells. Biores Technol 176:23–31

    Article  CAS  Google Scholar 

  • Zhang Y, Guo L, Hoffmann MR (2023) Ozone- and hydroxyl radical-mediated oxidation of pharmaceutical compounds using Ni-doped Sb–SnO2 anodes: degradation kinetics and transformation products. ACS ES&T Eng 3:335–348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Lorena Díaz de León-Martínez, Vanessa Galván-Romero, and Jessica Meléndez-Marmolejo during the research.

Funding

The authors received grants and fellowships from the National Council on Science and Technology—Sectoral Research Fund for Education Basic-Science # A1-S-28176, Initial Academic Postdoctoral Research CVU 815662, and CB-CONACYT (#2017–2018-A1-S-28176).

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Conceptualization, sampling, analytical methods, and manuscript editing by Karla Vargas-Berrones; analytical methods by Raúl Ocampo-Pérez, Israel Rodriguez-Torres, and Nahúm Medellín-Castillo; conceptualization, writing—reviewing, editing, and funding by Rogelio Flores-Ramírez.

Corresponding author

Correspondence to Rogelio Flores-Ramírez.

Ethics declarations

Ethical approval

The paper reflects the authors’ own research and analysis in a truthful and complete manner.

Consent to participate and publish

All persons who meet authorship criteria are listed as authors, and all authors consent to participate in and publish the work to take public responsibility for the content.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Nonylphenol cannot be removed with traditional wastewater treatment plants.

• The adsorption influence of MIPs for nonylphenol oxidative degradation is demonstrated.

• The first application of MIPs in oxidation processes for 4-NP is presented.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 218 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Berrones, K., Ocampo-Perez, R., Rodríguez-Torres, I. et al. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. Environ Sci Pollut Res 30, 90741–90756 (2023). https://doi.org/10.1007/s11356-023-28653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28653-z

Keywords

Navigation