Skip to main content

Advertisement

Log in

Optimization of China’s freight transportation structure based on adaptive genetic algorithm under the background of carbon peak

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Transportation is the key carbon emission source after energy supply and industrial production. Under the vision of carbon peak and carbon neutralization, the pressure of reducing carbon emissions in transportation will be greater in the future. This paper constructs a model that takes transportation carbon emission as the main target and freight transportation utility value as the auxiliary target. The constructed model satisfies the constraints of freight turnover in the whole society, freight economic and social benefits, and the ecological constraints of the freight system. With MATLAB, the freight turnover of roadways, railways, and waterways (excluding ocean transportation) in 2030 is solved by using the adaptive genetic algorithm. The results indicate that (I) compared with the current freight structure of China, the roadway freight sharing rate in 2030 will decrease by 8.07%, and the railway freight sharing rate and the waterway freight sharing rate (excluding ocean transportation) will increase by 0.93% and 7.13%, respectively. (II) After optimization, the energy consumption and carbon emission are reduced by 42,471,500 tons (10.3%) and 91,379,400 tons (10.2%) of standard coal, respectively. (III) The adaptive genetic algorithm outperforms the traditional genetic algorithm in terms of convergence speed and accuracy. (IV) As the weight coefficient of carbon emission increases, the utility value of freight transportation consistently decreases, and the sensitivity increases. Meanwhile, as the carbon emission weight coefficient increases, carbon emission keeps decreasing, and the sensitivity decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hang Ke almost was responsible for the whole of the paper; Guangying Xu guided the thesis writing; Chuntang Li, Jing Gao, Xinrui Xiao, Xin Wu, and Quanwei Yan were responsible for modifying the format and searching data.

Corresponding author

Correspondence to Guangyin Xu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Xu, G., Li, C. et al. Optimization of China’s freight transportation structure based on adaptive genetic algorithm under the background of carbon peak. Environ Sci Pollut Res 30, 85087–85101 (2023). https://doi.org/10.1007/s11356-023-28407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28407-x

Keywords

Navigation