Skip to main content

Advertisement

Log in

Enhancing performance and sustainability of ultra-high-performance concrete through solid calcium carbonate precipitation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ultra-high-performance concrete (UHPC) exhibits high compressive strength and good durability. However, owing to the dense microstructure of UHPC, carbonation curing cannot be performed to capture and sequester carbon dioxide (CO2). In this study, CO2 was added to UHPC indirectly. Gaseous CO2 was first converted into solid calcium carbonate (CaCO3) using calcium hydroxide, and the converted CaCO3 was then added to UHPC at 2, 4, and 6 wt% based on the cementitious material. The performance and sustainability of UHPC with indirect CO2 addition were investigated through macroscopic and microscopic experiments. The experimental results showed that the method used did not negatively affect the performance of UHPC. Compared with the control group, the early strength, ultrasonic velocity, and resistivity of UHPC containing solid CO2 improved to varying degrees. Microscopic experiments, such as heat of hydration and thermogravimetric analysis (TGA), demonstrated that adding captured CO2 accelerated the hydration rate of the paste. Finally, the CO2 emissions were normalized according to the compressive strength and resistivity at 28 days. The results indicated that the CO2 emissions per unit compressive strength and unit resistivity of UHPC with CO2 were lower than those of the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ashraf W (2016) Carbonation of cement-based materials: challenges and opportunities. Constr Build Mater 120:558–570

    Article  CAS  Google Scholar 

  • Bajaber MA, Hakeem IY (2021) UHPC evolution, development, and utilization in construction: a review. J Mater Res Technol 10:1058–1074

    Article  CAS  Google Scholar 

  • Bentz DP (2006) Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cem Concr Compos 28:124–129

    Article  CAS  Google Scholar 

  • Berodier E, Scrivener K (2014) Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc 97:3764–3773

    Article  CAS  Google Scholar 

  • Bonavetti V, Donza H, Menendez G, Cabrera O, Irassar E (2003) Limestone filler cement in low w/c concrete: a rational use of energy. Cem Concr Res 33:865–871

    Article  CAS  Google Scholar 

  • Campos HF, Klein NS, Marques Filho J, Bianchini M (2020) Low-cement high-strength concrete with partial replacement of Portland cement with stone powder and silica fume designed by particle packing optimization. J Clean Prod 261:121228

  • Chen T, Gao X (2019) Effect of carbonation curing regime on strength and microstructure of Portland cement paste. J CO2 Util 34:74–86

    Article  Google Scholar 

  • De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41:279–291

    Article  Google Scholar 

  • Dhandapani Y, Santhanam M, Kaladharan G, Ramanathan S (2021) Towards ternary binders involving limestone additions — a review. Cem Concr Res 143:106396

    Article  CAS  Google Scholar 

  • Di Maria A, Snellings R, Alaerts L, Quaghebeur M, Van Acker K (2020) Environmental assessment of CO2 mineralisation for sustainable construction materials. Int J Greenh Gas Control 93:102882

    Article  Google Scholar 

  • Duan L, Hu W, Deng D, Fang W, Xiong M, Lu P, Li Z, Zhai C (2021) Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China. Environ Sci Ecotechnol 8:100125

    Article  CAS  Google Scholar 

  • Emission Factor, Raw materials and Energy, LCI DB, Korea Environment Industrial and Technology Institute. http://www.epd.or.kr/eng/lci/lciCo200.do. (2022.05.23)

  • Ge Z, Tawfek AM, Zhang H, Yang Y, Yuan H, Sun R, Wang Z (2021) Influence of an extrusion approach on the fiber orientation and mechanical properties of engineering cementitious composite. Constr Build Mater 306:124876

    Article  Google Scholar 

  • Ghafari E, Ghahari SA, Costa H, Júlio E, Portugal A, Durães L (2016) Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr Build Mater 127:43–48

    Article  CAS  Google Scholar 

  • Ghoddousi P, Adelzade Saadabadi L (2017) Study on hydration products by electrical resistivity for self-compacting concrete with silica fume and metakaolin. Constr Build Mater 154:219–228

    Article  CAS  Google Scholar 

  • Han Y, Lin R, Wang X-Y (2021a) Performance and sustainability of quaternary composite paste comprising limestone, calcined Hwangtoh clay, and granulated blast furnace slag. J Build Eng 43:102655

    Article  Google Scholar 

  • Han Y, Oh S, Wang XY, Lin RS (2021b) Hydration-strength-workability-durability of binary, ternary, and quaternary composite pastes. Materials (Basel) 15(1):204

    Article  Google Scholar 

  • Han Y, Lin R, Wang X-Y (2022a) Sustainable mixtures using waste oyster shell powder and slag instead of cement: performance and multi-objective optimization design. Constr Build Mater 348:128642

    Article  CAS  Google Scholar 

  • Han Y, Lin R, Wang X-Y (2022b) Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag. J Build Eng 47:103918

    Article  Google Scholar 

  • Harrison E, Berenjian A, Seifan M (2020) Recycling of waste glass as aggregate in cement-based materials. Environ Sci Ecotechnol 4:100064

    Article  Google Scholar 

  • He J et al (2022a) Towards carbon neutrality: a study on China’s long-term low-carbon transition pathways and strategies. Environ Sci Ecotechnol 9:100134

    Article  CAS  Google Scholar 

  • He ZH, Shen ML, Shi JY, Yalcinkaya C, Du SG, Yuan Q (2022b) Recycling coral waste into eco-friendly UHPC: mechanical strength, microstructure, and environmental benefits. Sci Total Environ 836:155424

    Article  CAS  Google Scholar 

  • Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–97

    Article  CAS  Google Scholar 

  • Hu J, Ge Z, Wang K (2014) Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Constr Build Mater 50:657–663

    Article  Google Scholar 

  • Huang H, Gao X, Khayat KH (2021) Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading. Cem Concr Compos 121:104108

    Article  CAS  Google Scholar 

  • Isaia GC, ALG G, Moraes R (2003) Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cem Concr Compos 25:69–76

    Article  CAS  Google Scholar 

  • Justnes H, Skocek J, Østnor TA, Engelsen CJ, Skjølsvold O (2020) Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cem Concr Res 137:106192

    Article  CAS  Google Scholar 

  • Kang S-H, Jeong Y, Tan KH, Moon J (2018) The use of limestone to replace physical filler of quartz powder in UHPFRC. Cem Concr Compos 94:238–247

    Article  CAS  Google Scholar 

  • Lee H-S, Lim S-M, Wang X-Y (2019) Optimal mixture design of low-CO2 high-volume slag concrete considering climate change and CO2 uptake. Int J Concr Struct Mater 13(1):1–13

    Article  Google Scholar 

  • Lee H-S, Wang X-Y (2021) Hydration model and evaluation of the properties of calcined Hwangtoh binary blends. Int J Concr Struct Mater 15:1–15

    Article  Google Scholar 

  • Li Q, Su A, Gao X (2021) Preparation of durable magnesium oxysulfate cement with the incorporation of mineral admixtures and sequestration of carbon dioxide. Sci Total Environ 809:152127

    Article  Google Scholar 

  • Lin R-S, Han Y, Wang X-Y (2021) Macro–meso–micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature. Cem Concr Compos 116:103871

    Article  CAS  Google Scholar 

  • Liu Z, Meng W (2021) Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: a review. J CO2 Util 44:101428

    Article  CAS  Google Scholar 

  • Liu B, Qin J, Shi J, Jiang J, Wu X, He Z (2021) New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Constr Build Mater 272:121660

    Article  CAS  Google Scholar 

  • Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38:848–860

    Article  CAS  Google Scholar 

  • Meddah MS, Lmbachiya MC, Dhir RK (2014) Potential use of binary and composite limestone cements in concrete production. Constr Build Mater 58:193–205

    Article  Google Scholar 

  • Mendes SES, Oliveira RLN, Cremonez C, Pereira E, Pereira E, Medeiros-Junior RA (2018) Electrical resistivity as a durability parameter for concrete design: experimental data versus estimation by mathematical model. Constr Build Mater 192:610–620

    Article  Google Scholar 

  • Mo Z, Gao X, Su A (2021) Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Constr Build Mater 268:121112

    Article  CAS  Google Scholar 

  • Mollah MY, Kesmez M, Cocke DL (2004) An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Sci Total Environ 325:255–262

    Article  CAS  Google Scholar 

  • Norhasyima RS, Mahlia TMI (2018) Advances in CO2 utilization technology: a patent landscape review. J CO2 Util 26:323–335

    Article  CAS  Google Scholar 

  • Qian X, Wang J, Fang Y, Wang L (2018) Carbon dioxide as an admixture for better performance of OPC-based concrete. J CO2 Util 25:31–38

    Article  CAS  Google Scholar 

  • Qin L, Gao X, Li Q (2018) Upcycling carbon dioxide to improve mechanical strength of Portland cement. J Clean Prod 196:726–738

    Article  CAS  Google Scholar 

  • Raza A, Gholami R, Rezaee R, Rasouli V, Rabiei M (2019) Significant aspects of carbon capture and storage – a review. Petroleum 5:335–340

    Article  Google Scholar 

  • Ren M, Wen X, Gao X, Liu Y (2021) Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material. Constr Build Mater 273:121714

    Article  CAS  Google Scholar 

  • Rostami V, Shao Y, Boyd AJ (2012) Carbonation curing versus steam curing for precast concrete production. J Mater Civil Eng 24:1221–1229

    Article  CAS  Google Scholar 

  • Saillio M, Baroghel-Bouny V, Pradelle S, Bertin M, Vincent J, d’Espinose de Lacaillerie J-B (2021) Effect of supplementary cementitious materials on carbonation of cement pastes. Cem Concr Res 142:106358

    Article  CAS  Google Scholar 

  • Sengul O (2014) Use of electrical resistivity as an indicator for durability. Constr Build Mater 73:434–441

    Article  Google Scholar 

  • Tian S, Wang S, Bai X, Luo G, Li Q, Yang Y, Hu Z, Li C, Deng Y (2021) Global patterns and changes of carbon emissions from land use during 1992–2015. Environ Sci Ecotechnol 7:100108

    Article  CAS  Google Scholar 

  • Trezza M, Lavat A (2001) Analysis of the system 3CaO· Al2O3–CaSO4· 2H2O–CaCO3–H2O by FT-IR spectroscopy. Cem Concr Res 31:869–872

    Article  CAS  Google Scholar 

  • Vuk T, Tinta V, Gabrovšek R, Kaučič V (2001) The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem Concr Res 31:135–139

    Article  CAS  Google Scholar 

  • Yang K-H, Jung Y-B, Cho M-S, Tae S-H (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J Clean Prod 103:774–783

    Article  CAS  Google Scholar 

  • Ylmén R, Jäglid U, Steenari B-M, Panas I (2009) Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cem Concr Res 39:433–439

    Article  Google Scholar 

  • Zhang H, Xu Y, Gan Y, Chang Z, Schlangen E, Šavija B (2019a) Combined experimental and numerical study of uniaxial compression failure of hardened cement paste at micrometre length scale. Cem Concr Res 126:105925

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang J, Luo W, Wang J, Shi J, Zhuang H, Wang Y (2019b) Effect of compressive strength and chloride diffusion on life cycle CO2 assessment of concrete containing supplementary cementitious materials. J Clean Prod 218:450–458

    Article  CAS  Google Scholar 

  • Zhang GY, Ahn YH, Lin RS, Wang XY (2021) Effect of waste ceramic powder on properties of alkali-activated blast furnace slag paste and mortar. Polymers (Basel) 13(16):2817

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. RS-2023-00208720) and the China Scholarship Council (CSC) (202208260001) and was supported by Yunnan Fundamental Research Projects (grant no. 202201BE070001-010).

Author information

Authors and Affiliations

Authors

Contributions

Yi-Han: conceptualization, methodology, investigation, data curation, and writing—review and editing.

Run-Sheng Lin: investigation, review, and editing.

Xiao-Yong Wang: conceptualization, supervision, validation, resources, project administration, funding acquisition, and writing—review and editing.

TaeSoo Kim: investigation and review.

Corresponding author

Correspondence to Xiao-Yong Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: José Dinis Silvestre

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Lin, R., Wang, XY. et al. Enhancing performance and sustainability of ultra-high-performance concrete through solid calcium carbonate precipitation. Environ Sci Pollut Res 30, 78665–78679 (2023). https://doi.org/10.1007/s11356-023-28072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28072-0

Keywords

Navigation