Abstract
In this paper, we provide a comprehensive review of the latest research trends in terms of the preparation, and characteristics of activated carbons regarding CO2 adsorption applications, with a special focus on future investigation paths. The reported current research trends are primarily closely related to the synthesis conditions (carbonization and physical or chemical activation process), to develop the microporosity and surface area, which are the most important factors affecting the effectiveness of adsorption. Furthermore, we emphasized the importance of regeneration techniques as a factor determining the actual technological and economic suitability of a given material for CO2 capture application. Consequently, this work provides a summary and potential directions for the development of activated carbons (AC). We attempt to create a thorough theoretical foundation for activated carbons while also focusing on identifying and specific statements of the most relevant ongoing research scope that might be advantageous to progress and pursue in the coming years.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in this published article.
References
(WMO), W. M. O., & (WMO), W. M. O. (2021) State of the Global Climate 2020 (WMO-No. 1264). WMO
Abbas AF, Ahmed MJ (2016) Mesoporous activated carbon from date stones (Phoenix dactylifera L.) by one-step microwave assisted K2CO3 pyrolysis. J Water Process Eng 9:201–207. https://doi.org/10.1016/j.jwpe.2016.01.004
Abdeljaoued A, Querejeta N, Durán I, Álvarez-Gutiérrez N, Pevida C, Chahbani MH (2018) Preparation and evaluation of a coconut shell-based activated carbon for CO2/CH4 separation. Energies 11(7):1748. https://doi.org/10.3390/en11071748
Aber S, Khataee A, Sheydaei M (2009) Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresour Technol 100(24):6586–6591. https://doi.org/10.1016/j.biortech.2009.07.074
Abuelnoor N, AlHajaj A, Khaleel M, Vega LF, Abu-Zahra MRM (2021) Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere 282:131111. https://doi.org/10.1016/j.chemosphere.2021.131111
Acharya J, Sahu JN, Mohanty CR, Meikap BC (2009) Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem Eng J 149(1–3):249–262. https://doi.org/10.1016/j.cej.2008.10.029
Adel A, Barker A, Bleaney EF, Loubser B, Coggeshall JHN, Saier ND, Cross EL, Daniels PC, Dennison F, Dennison DM, Goody DM, Robinson RM, Strong GD, Watanabe J, Thorndike R, Wells AM, Wilson AJ (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc R So Lond A 209(1097):196–218. https://doi.org/10.1098/RSPA.1951.0197
Adinata D, Wan Daud WMA, Aroua MK (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour Technol 98(1):145–149. https://doi.org/10.1016/j.biortech.2005.11.006
Agboola O, Okoli B, Sanni SE, Alaba PA, Popoola P, Sadiku ER, Mubiayi PM, Akinlabi ET, Makhatha ME (2019) Synthesis of activated carbon from olive seeds: investigating the yield, energy efficiency, and dye removal capacity. SN Appl Sci 1(1). https://doi.org/10.1007/s42452-018-0089-5
Agirre I, Griessacher T, Rösler G, Antrekowitsch J (2013) Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor. Fuel Process Technol 106. https://doi.org/10.1016/j.fuproc.2012.07.010
Ahmadpour A, Do DD (1997) The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 35(12):1723–1732. https://doi.org/10.1016/S0008-6223(97)00127-9
Ahmedna M, Marshall WE, Rao RM (2000) Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization. Bioresour Technol 71(2):103–112. https://doi.org/10.1016/S0960-8524(99)90069-X
Al-Ghussain L (2019) Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy 38(1):13–21. https://doi.org/10.1002/EP.13041
Álvarez-Gutiérrez N, Gil MV, Rubiera F, Pevida C (2015) Cherry-stones-based activated carbons as potential adsorbents for CO2/CH4 separation: Effect of the activation parameters. Greenh Gases Sci Technol 5(6):812. https://doi.org/10.1002/ghg.1534
Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40(3):178–187. https://doi.org/10.1016/J.ENDEAVOUR.2016.07.002
Aragón-Briceño CI, Grasham O, Ross AB, Dupont V, Camargo-Valero MA (2020) Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew Energy 157. https://doi.org/10.1016/j.renene.2020.05.021
Arami-Niya A, Rufford TE, Zhu Z (2016) Nitrogen-doped carbon foams synthesized from banana peel and zinc complex template for adsorption of CO2, CH4, and N2. Energy Fuels 30(9):7298–7309. https://doi.org/10.1021/acs.energyfuels.6b00971
Aworn A, Thiravetyan P, Nakbanpote W (2009) Preparation of CO2 activated carbon from corncob for monoethylene glycol adsorption. Colloids Surf, A 333(1–3):19–25. https://doi.org/10.1016/J.COLSURFA.2008.09.021
Ayanoʇlu A, Yumrutaş R (2016) Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels. Energy Convers Manag 111. https://doi.org/10.1016/j.enconman.2015.12.070
Azevedo DCS, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL (2007) Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater 100(1–3):361–364. https://doi.org/10.1016/j.micromeso.2006.11.024
Bagheri N, Abedi J (2009) Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem Eng Res Des 87(8):1059–1064. https://doi.org/10.1016/j.cherd.2009.02.001
Bagreev A, Adib F, Bandosz TJ (2001) pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon 39(12):1897–1905. https://doi.org/10.1016/S0008-6223(00)00317-1
Bahamon D, Ogungbenro AE, Khaleel M, Abu-Zahra MRM, Vega LF (2020) Performance of activated carbons derived from date seeds in CO2 swing adsorption determined by combining experimental and molecular simulation data. Ind Eng Chem Res 59(15):7161–7173. https://doi.org/10.1021/acs.iecr.9b05542
Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manag 50(12):3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014
Balou S, Babak SE, Priye A (2020) Synergistic effect of nitrogen doping and ultra-microporosity on the performance of biomass and microalgae-derived activated carbons for CO2 capture. ACS Appl Mater Interfaces 12(38):42711–42722. https://doi.org/10.1021/acsami.0c10218
Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ (2003) Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons. Bioresour Technol 90(2):175–184. https://doi.org/10.1016/S0960-8524(03)00117-2
Basta AH, Fierro V, El-Saied H, Celzard A (2009) 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresour Technol 100(17):3941–3947. https://doi.org/10.1016/j.biortech.2009.02.028
Ben-Mansour R, Qasem NAA (2018) An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Convers Manag 156. https://doi.org/10.1016/j.enconman.2017.11.010
Betancur M, Martínez JD, Murillo R (2009) Production of activated carbon by waste tire thermochemical degradation with CO2. J Hazard Mater 168(2–3):882–887. https://doi.org/10.1016/j.jhazmat.2009.02.167
Bonelli PR, Della Rocca PA, Cerrella EG, Cukierman AL (2001) Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil Nut shells. Bioresour Technol 76(1):15–22. https://doi.org/10.1016/S0960-8524(00)00085-7
Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A (2013) Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity. J Sustain Environ 2
Bosch D, Back JO, Gurtner D, Giberti S, Hofmann A, Bockreis A (2022) Alternative feedstock for the production of activated carbon with ZnCl2: Forestry residue biomass and waste wood. Carbon Resour Convers 5(4):299–309. https://doi.org/10.1016/J.CRCON.2022.09.001
Boudou JP, Chehimi M, Broniek E, Siemieniewska T, Bimer J (2003) Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment. Carbon 41(10):1999–2007. https://doi.org/10.1016/S0008-6223(03)00210-0
Boujibar O, Souikny A, Ghamouss F, Achak O, Dahbi M, Chafik T (2018) CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells. J Environ Chem Eng 6(2):1995–2002. https://doi.org/10.1016/j.jece.2018.03.005
Brito GM, Cipriano DF, Schettino MÂ, Cunha AG, Coelho ERC, Checon Freitas JC (2019) One-step methodology for preparing physically activated biocarbons from agricultural biomass waste. J Environ Chem Eng 7(3):103113. https://doi.org/10.1016/j.jece.2019.103113
Brunauer S, Mikhail RS, Bodor EE (1967) Some remarks about capillary condensation and pore structure analysis. J. Colloid Interface Sci 25(3):353–358. https://doi.org/10.1016/0021-9797(67)90041-0
Buckingham AD, Fowler PW, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88(6):963–988
Budinova T, Ekinci E, Yardim F, Grimm A, Björnbom E, Minkova V, Goranova M (2006) Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process Technol 87(10):899–905. https://doi.org/10.1016/j.fuproc.2006.06.005
Cabal B, Budinova T, Ania CO, Tsyntsarski B, Parra JB, Petrova B (2009) Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods. J Hazard Mater 161(2–3):1150–1156. https://doi.org/10.1016/j.jhazmat.2008.04.108
Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100(1):292–298. https://doi.org/10.1016/j.biortech.2008.06.009
Cal MP, Rood MJ, Larson SM (1996) Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Sep Purif 10(2):117–121. https://doi.org/10.1016/0950-4214(96)00004-7
Casas N, Schell J, Joss L, Mazzotti M (2013) A parametric study of a PSA process for pre-combustion CO2 capture. Sep Purif Technol 104. https://doi.org/10.1016/j.seppur.2012.11.018
Casco ME, Martínez-Escandell M, Silvestre-Albero J, Rodríguez-Reinoso F (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67. https://doi.org/10.1016/j.carbon.2013.09.086
Castro J de S, Assemany PP, Carneiro AC de O, Ferreira J, de Jesus Júnior MM, Rodrigues F de Á, Calijuri ML (2021) Hydrothermal carbonization of microalgae biomass produced in agro-industrial effluent: Products, characterization and applications. Sci Total Environ 768. https://doi.org/10.1016/j.scitotenv.2020.144480
Cerminara PJ, Sorial GA, Papadimas SP, Suidan MT, Moteleb MA, Speth TF (1995) Effect of influent oxygen concentration on the GAC adsorption of VOCs in the presence of BOM. Water Res 29(2):409–419. https://doi.org/10.1016/0043-1354(94)00185-A
Chatterjee R, Sajjadi B, Mattern DL, Chen WY, Zubatiuk T, Leszczynska D, Leszczynski J, Egiebor NO, Hammer N (2018) Ultrasound cavitation intensified amine functionalization: A feasible strategy for enhancing CO2 capture capacity of biochar. Fuel 225. https://doi.org/10.1016/j.fuel.2018.03.145
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G (2013) Activated carbons and amine-modified materials for carbon dioxide capture – A review. Front Environ Sci Eng 7(3):326–340. https://doi.org/10.1007/S11783-013-0510-7/METRICS
Chen S, Liu J, Zhang Q, Teng F, McLellan BC (2022) A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew Sustain Energy Rev 167:112537. https://doi.org/10.1016/J.RSER.2022.112537
Chen X, Ma X, Peng X, Lin Y, Yao Z (2018) Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour Technol 249. https://doi.org/10.1016/j.biortech.2017.10.096
Choi SW, Tang J, Pol VG, Lee KB (2019) Pollen-derived porous carbon by KOH activation: Effect of physicochemical structure on CO 2 adsorption. J CO2 Util 29:146-155. https://doi.org/10.1016/j.jcou.2018.12.005
Choma J, Marszewski M, Osuchowski L, Jagiello J, Dziura A, Jaroniec M (2015) Adsorption properties of activated carbons prepared from waste CDs and DVDs. ACS Sustain Chem Eng 3(4):733–742
Kwiatkowski M, Serafin J, Booth AM, Michalkiewicz B (2021) Computer analysis of the effect of activation temperature on the microporous structure development of activated carbon derived from common polypody. Materials 14(11):2951. https://doi.org/10.3390/ma14112951
Choma J, Stachurska K, Osuchowski Ł, Dziura A, Jaroniec M (2015) Adsorpcja dwutlenku węgla na węglach aktywnych otrzymanych z prekursorów polimerowych. Ochrona Srodowiska 37(4)
Christiansen AC, Wettestad J (2003) The EU as a frontrunner on greenhouse gas emissions trading: How did it happen and will the EU succeed? Clim Pol 3(1):3–18. https://doi.org/10.1016/S1469-3062(02)00096-7
Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT (1995) Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind Eng Chem Res 34(2):591–598. https://doi.org/10.1021/ie00041a020
Chung YC, Lin YY, Tseng CP (2005) Removal of high concentration of NH3 and coexistent H 2S by biological activated carbon (BAC) biotrickling filter. Bioresour Technol 96(16):1812–1820. https://doi.org/10.1016/j.biortech.2005.01.003
Clausse M, Merel J, Meunier F (2011) Numerical parametric study on CO2 capture by indirect thermal swing adsorption. Int J Greenhouse Gas Control 5(5):1206–1213. https://doi.org/10.1016/J.IJGGC.2011.05.036
Climate Change (2021) The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
Cook D, Newcombe G, Sztajnbok P (2001) The application of powdered activated carbon for MIB and geosmin removal: Predicting PAC doses in four raw waters. Water Res 35(5):1325–1333. https://doi.org/10.1016/S0043-1354(00)00363-8
Cordero T, Rodriguez-Mirasol J, Tancredi N, Piriz J, Vivo G, Rodriguez JJ (2002) Influence of surface composition and pore structure on Cr(III) adsorption onto activated carbons. Ind Eng Chem Res 41(24):6042–6048. https://doi.org/10.1021/ie020210f
Crippa M, Guizzardi D, Solazzo E, Muntean M, Schaaf, E, Monforti-Ferrario F, Vignati E (2021) GHG emissions of all world countries–2021 Report. https://doi.org/10.2760/173513
Cronje KJ, Chetty K, Carsky M, Sahu JN, Meikap BC (2011) Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275(1–3):276–284. https://doi.org/10.1016/j.desal.2011.03.019
Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001
Darkwah WK, Odum B, Addae M, Koomson D, Kweku DW, Bismark O, Maxwell A, Desmond KA, Danso KB, Asante Oti-Mensah E, Quachie AT, Adormaa BB, Dopico E (2018) Greenhouse effect: Greenhouse gases and their impact on global warming. Artic J Sci Res Rep. https://doi.org/10.9734/JSRR/2017/39630
Dawson EA, Parkes GMB, Barnes PA, Chinn MJ (2003) An investigation of the porosity of carbons prepared by constant rate activation in air. Carbon 41(3):571–578. https://doi.org/10.1016/S0008-6223(02)00366-4
de López de Letona Sánchez M, Macías-García A, Díaz-Díez MA, Cuerda-Correa EM, Gañán-Gómez J, Nadal-Gisbert A (2006) Preparation of activated carbons previously treated with hydrogen peroxide: Study of their porous texture. Appl Surf Sci 252(17):5984–5987. https://doi.org/10.1016/j.apsusc.2005.11.022
Demirbaş A, Arin G (2002) An overview of biomass pyrolysis. Energy Sour 24(5):471–482. https://doi.org/10.1080/00908310252889979
Deng H, Li G, Yang H, Tang J, Tang J (2010) Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J 163(3):373–381. https://doi.org/10.1016/j.cej.2010.08.019
Deng H, Zhang G, Xu X, Tao G, Dai J (2010) Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J Hazard Mater 182(1–3):217–224. https://doi.org/10.1016/j.jhazmat.2010.06.018
Deng S, Hu B, Chen T, Wang B, Huang J, Wang Y, Yu G (2015) Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21(1–2):125–133. https://doi.org/10.1007/s10450-015-9655-y
Deng S, Wei H, Chen T, Wang B, Huang J, Yu G (2014) Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem Eng J 253. https://doi.org/10.1016/j.cej.2014.04.115
Derbyshire F, Andrews R, Jacques D, Jagtoyen M, Kimber G, Rantell T (2001) Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors. Fuel 80(3):345–356. https://doi.org/10.1016/S0016-2361(00)00099-5
Dhoke C, Zaabout A, Cloete S, Amini S (2021) Review on reactor configurations for adsorption-based CO2 capture. Ind Eng Chem Res 60(10):3779–3798. https://doi.org/10.1021/acs.iecr.0c04547
Dhoke C, Cloete S, Krishnamurthy S, Seo H, Luz I, Soukri M, Park Y, Blom R, Amini S, Zaabout A (2020) Sorbents screening for post-combustion CO2 capture via combined temperature and pressure swing adsorption. Chem Eng J 380. https://doi.org/10.1016/j.cej.2019.122201
Di Natale F, Lancia A, Molino A, Musmarra D (2007) Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J Hazard Mater 145(3):381–390. https://doi.org/10.1016/J.JHAZMAT.2006.11.028
Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M (2015) Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng 53:112–121. https://doi.org/10.1016/J.JTICE.2015.02.025
Dong K, Hochman G, Zhang Y, Sun R, Li H, Liao H (2018) CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ 75. https://doi.org/10.1016/j.eneco.2018.08.017
Donohue MD, Aranovich GL (1998) Adsorption hysteresis in porous solids. J. Colloid Interface Sci 205(1):121–130. https://doi.org/10.1006/jcis.1998.5639
Doying EG (1966) Gas activation of carbonized cellulose fabrics for use as filters
Drage TC, Blackman JM, Pevida C, Snape CE (2009) Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23(5):2790–2796. https://doi.org/10.1021/ef8010614
Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241. https://doi.org/10.1021/cr60204a006
Dubinin MM, Gregg SJ., Sing, KSW, Stoeckli HF (1979) Characterization of porous solids. Soc Chem Ind
Duduku K, Anisuzzaman SM, Bono Teo BK, Rao VVB (2019) Carbon dioxide capture using waste tire based adsorbent. IOP Conf Ser: Mater Sci Eng 606(1):012006. https://doi.org/10.1088/1757-899X/606/1/012006
Durán I, Álvarez-Gutiérrez N, Rubiera F, Pevida C (2018) Biogas purification by means of adsorption on pine sawdust-based activated carbon: Impact of water vapor. Chem Eng J 353. https://doi.org/10.1016/j.cej.2018.07.100
Dwivedi P, Gaur V, Sharma A, Verma N (2004) Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep Purif Technol 39(1–2 SPEC. ISS). https://doi.org/10.1016/j.seppur.2003.12.016
Dziejarski B, Krzyżyńska R, Andersson K (2023) Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 342. https://doi.org/10.1016/j.fuel.2023.127776
El Qada EN, Allen SJ, Walker GM (2006) Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem Eng J 124(1–3):103–110. https://doi.org/10.1016/j.cej.2006.08.015
El-Hendawy ANA, Samra SE, Girgis BS (2001) Adsorption characteristics of activated carbons obtained from corncobs. Colloids Surf A Physicochem Eng Asp 180(3):209–221. https://doi.org/10.1016/S0927-7757(00)00682-8
El-Hendawy ANA, Alexander AJ, Andrews RJ, Forrest G (2008) Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks. J Anal Appl Pyrol 82(2):272–278. https://doi.org/10.1016/j.jaap.2008.04.006
Ello AS, De Souza LKC, Trokourey A, Jaroniec M (2013a) Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater 180. https://doi.org/10.1016/j.micromeso.2013.07.008
Ello AS, De Souza LKC, Trokourey A, Jaroniec M (2013b) Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J CO2 Util 2:35–38. https://doi.org/10.1016/j.jcou.2013.07.003
Encinar JM, Beltrán FJ, Ramiro A, González JF (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables. Fuel Process Technol 55(3):219–233. https://doi.org/10.1016/S0378-3820(98)00052-6
Evode N, Qamar SA, Bilal M, Barceló D, Iqbal HMN (2021) Plastic waste and its management strategies for environmental sustainability. Case Stud Chem Environ Eng 4. https://doi.org/10.1016/j.cscee.2021.100142
Fagnani HMC, da Silva CTP, Pereira MM, Rinaldi AW, Arroyo PA, de Barros MASD (2019) CO2 adsorption in hydrochar produced from waste biomass. SN Appl Sci 1(9). https://doi.org/10.1007/s42452-019-1055-6
Fierro V, Muñiz G, Basta AH, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid. J Hazard Mater 181(1–3):27–34. https://doi.org/10.1016/j.jhazmat.2010.04.062
Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol 62(2):331–349. https://doi.org/10.1016/S0165-2370(01)00129-2
Foo KY, Hameed BH (2011) Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem Eng J 173(2):385–390. https://doi.org/10.1016/j.cej.2011.07.073
Foo KY, Hameed BH (2012) Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO 3 activation. Microporous Mesoporous Mater 148(1):191–195. https://doi.org/10.1016/j.micromeso.2011.08.005
Forzieri G, Feyen L, Russo S, Vousdoukas M, Alfieri L, Outten S, Migliavacca M, Bianchi A, Rojas R, Cid A (2016) Multi-hazard assessment in Europe under climate change. Clim Chang 137(1–2):105–119. https://doi.org/10.1007/s10584-016-1661-x
Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9(12):e113888. https://doi.org/10.1371/journal.pone.0113888
Gañán J, González JF, González-García CM, Ramiro A, Sabio E, Román S (2006) Air-activated carbons from almond tree pruning: Preparation and characterization. Appl Surf Sci 252(17):5988–5992. https://doi.org/10.1016/j.apsusc.2005.11.024
Gao X, Liu S, Zhang Y, Luo Z, Cen K (2011) Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO. J Hazard Mater 188(1–3):58–66. https://doi.org/10.1016/j.jhazmat.2011.01.065
Ge C, Song J, Qin Z, Wang J, Fan W (2016) Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture. ACS Appl Mater Interfaces 8(29):18849–18859. https://doi.org/10.1021/acsami.6b04771
Ge C, Lian D, Cui S, Gao J, Lu J (2019) Highly selective CO2 capture on waste polyurethane foam-based activated carbon. Processes 7(9):592. https://doi.org/10.3390/pr7090592
Gerçel HF (2002) Production and characterization of pyrolysis liquids from sunflower-pressed bagasse. Bioresour Technol 85(2):113–117. https://doi.org/10.1016/S0960-8524(02)00101-3
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7). https://doi.org/10.1126/sciadv.1700782
Gil MV, Álvarez-Gutiérrez N, Martínez M, Rubiera F, Pevida C, Morán A (2015) Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chem Eng J 269. https://doi.org/10.1016/j.cej.2015.01.100
Global Energy Review: CO2 Emissions in 2021 – Analysis - IEA (n.d.) Retrieved March 7, 2023, from https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2
Gomes VG, Yee KWK (2002) Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep Purif Technol 28(2):161–171. https://doi.org/10.1016/S1383-5866(02)00064-3
Gomez-Serrano V, Valenzuela-Calahorro C, Pastor-Villegas J (1993) Characterization of rockrose wood, char and activated carbon. Biomass Bioenergy 4(5):355–364. https://doi.org/10.1016/0961-9534(93)90052-6
Gong J, Chen X, Tang T (2019) Recent progress in controlled carbonization of (waste) polymers. Progr Polym Sci 94:1–32. https://doi.org/10.1016/j.progpolymsci.2019.04.001
González MT, Molina-Sabio M, Rodríguez-Reinoso F (1994) Steam activation of olive stone chars, development of porosity. Carbon 32(8):1407–1413. https://doi.org/10.1016/0008-6223(94)90133-3
Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ (2004) Removal of water pollutants with activated carbons prepared from H 3PO4 activation of lignin from kraft black liquors. Water Res 38(13):3043–3050. https://doi.org/10.1016/j.watres.2004.04.048
Grande CA, Ribeiro RPL, Oliveira ELG, Rodrigues AE (2009) Electric swing adsorption as emerging CO2 capture technique. Energy Proc 1(1):1219–1225. https://doi.org/10.1016/j.egypro.2009.01.160
Greco G, Canevesi RLS, Di Stasi C, Celzard A, Fierro V, Manyà JJ (2021) Biomass-Derived Carbons Physically Activated in One or Two Steps for CH 4 Separation. SSRN Electron J. https://doi.org/10.2139/ssrn.3943535
Grzyb B, Albiniak A, Broniek E, Furdin G, Marêché JF, Bégin D (2009) SO2 adsorptive properties of activated carbons prepared from polyacrylonitrile and its blends with coal-tar pitch. Microporous Mesoporous Mater 118(1–3):163–168. https://doi.org/10.1016/J.MICROMESO.2008.08.032
Guo Y, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater 100(1–3):12–19. https://doi.org/10.1016/j.micromeso.2006.10.006
Guo S, Peng J, Li W, Yang K, Zhang L, Zhang S, Xia H (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255(20):8443–8449. https://doi.org/10.1016/J.APSUSC.2009.05.150
Guo L, Yang J, Hu G, Hu X, Wang L, Dong Y, Dacosta H, Fan M (2016) Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell. ACS Sustain Chem Eng 4(5):2806–2813. https://doi.org/10.1021/acssuschemeng.6b00327
Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45(13):4047–4055. https://doi.org/10.1016/j.watres.2011.05.016
Hadoun H, Sadaoui Z, Souami N, Sahel D, Toumert I (2013) Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Appl Surf Sci 280:1–7. https://doi.org/10.1016/J.APSUSC.2013.04.054
Hai FI, Yamamoto K, Nakajima F, Fukushi K (2011) Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Res 45(6):2199–2206. https://doi.org/10.1016/j.watres.2011.01.013
Hameed BH, El-Khaiary MI (2008) Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J Hazard Mater 157(2–3):344–351. https://doi.org/10.1016/j.jhazmat.2007.12.105
Han J, Zhang L, Zhao B, Qin L, Wang Y, Xing F (2019) The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. Ind Crops Prod 128. https://doi.org/10.1016/j.indcrop.2018.11.028
Hartzog DG, Sircar S (1995) Sensitivity of PSA process performance to input variables. Adsorption 1(2):133–151. https://doi.org/10.1007/BF00705001
Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40(13):2381–2386. https://doi.org/10.1016/S0008-6223(02)00118-5
Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes VG (2005) Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J Colloid Interface Sci 281(2):437–443. https://doi.org/10.1016/J.JCIS.2004.08.092
Hedin N, Andersson L, Bergström L, Yan J (2013) Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl Energy 104:418–433. https://doi.org/10.1016/J.APENERGY.2012.11.034
Heibati B, Rodriguez-Couto S, Al-Ghouti MA, Asif M, Tyagi I, Agarwal S, Gupta VK (2015) Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J Mol Liq 208. https://doi.org/10.1016/j.molliq.2015.03.057
Heidari A, Younesi H, Rashidi A, Ghoreyshi AA (2014) Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem Eng J 254. https://doi.org/10.1016/j.cej.2014.06.004
Hijnen WAM, Suylen GMH, Bahlman JA, Brouwer-Hanzens A, Medema GJ (2010) GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment. Water Res 44(4):1224–1234. https://doi.org/10.1016/j.watres.2009.10.011
Hinkov I, Lamari FD, Langlois P, Dicko M, Chilev C, Pentchev I (2016) Carbon dioxide capture by adsorption (review). J Chem Technol Metall 51(6)
Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47(14):4883–4890. https://doi.org/10.1021/ie070831e
Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25(4):1802–1810. https://doi.org/10.1021/ef101745n
Horikawa T, Kitakaze Y, Sekida T, Hayashi J, Katoh M (2010) Characteristics and humidity control capacity of activated carbon from bamboo. Bioresour Technol 101(11):3964–3969. https://doi.org/10.1016/j.biortech.2010.01.032
Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO 2-filling capacity and selectivity of carbon nanopores: Synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 45(16):7068–7074. https://doi.org/10.1021/ES200782S/SUPPL_FILE/ES200782S_SI_001.PDF
Huang GG, Liu YF, Wu XX, Cai JJ (2019) Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. Xinxing Tan Cailiao/New Carbon Mater 34(3):247–257. https://doi.org/10.1016/S1872-5805(19)60014-4
Humbert H, Gallard H, Suty H, Croué JP (2008) Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Res 42(6–7):1635–1643. https://doi.org/10.1016/j.watres.2007.10.012
Hussin F, Aroua MK, Kassim MA, Fazara U, Ali M, Hussin C, Aroua F, Kassim MK, Ali MA (2021) Transforming plastic waste into porous carbon for capturing carbon dioxide: A review. Energies 14(24):8421. https://doi.org/10.3390/EN14248421
Idrees M, Rangari V, Jeelani S (2018) Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J CO2 Util 26:380–387. https://doi.org/10.1016/j.jcou.2018.05.016
Igalavithana AD, Lee SE, Lee YH, Tsang DCW, Rinklebe J, Kwon EE, Ok YS (2017) Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174. https://doi.org/10.1016/j.chemosphere.2017.01.148
IPCC Working Group II (2022) IPCC AR6 working group II: Summary for policymakers: climate change 2022, impacts, adaptation and vulnerability. Implementing a US carbon tax: challenges and debates
Ismail IS, Rashidi NA, Yusup S (2022) Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ Sci Pollut Res 29(9):12434–12440. https://doi.org/10.1007/s11356-021-15030-x
Israelachvili JN, Tabor D (1973) Van der waals forces: Theory and experiment. 7:1–55. https://doi.org/10.1016/B978-0-12-571807-3.50006-5
Jäger-Waldau A, Kougias I, Taylor N, Thiel C (2020) How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew Sustain Energy Rev 126:109836. https://doi.org/10.1016/j.rser.2020.109836
Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis- A technological review. Energies 5(12):4952–4952. https://doi.org/10.3390/en5124952
Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. In Chem Eng J 283:789. https://doi.org/10.1016/j.cej.2015.08.014
Jankovská Z, Večeř M, Koutník I, Matějová L (2020) A case study of waste scrap tyre-derived carbon black tested for nitrogen, carbon dioxide, and cyclohexane adsorption. Molecules 25(19):4445. https://doi.org/10.3390/molecules25194445
Jankowska H, Świątkowski A, Choma J (1985) Węgiel aktywny. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki
Jawad AH, Malek NNA, Khadiran T, ALOthman ZA, Yaseen ZM (2022) Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: An optimized process. Diam Relat Mater 128:109288. https://doi.org/10.1016/J.DIAMOND.2022.109288
Jiang K, Ashworth P (2021) The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renew Sustain Energy Rev 138. https://doi.org/10.1016/j.rser.2020.110521
Jiang C, Yakaboylu GA, Yumak T, Zondlo JW, Sabolsky EM, Wang J (2020) Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew Energy 155. https://doi.org/10.1016/j.renene.2020.03.111
Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349(6312):772–775. https://doi.org/10.1038/349772a0
Joss L, Gazzani M, Mazzotti M (2017) Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chem Eng Sci 158. https://doi.org/10.1016/j.ces.2016.10.013
Jusoh A, Hartini WJH, Ali N, Endut A (2011) Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour Technol 102(9):5312–5318. https://doi.org/10.1016/j.biortech.2010.12.074
Kambo HS, Minaret J, Dutta A (2018) Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste Biomass Valor 9(7):1181–1189. https://doi.org/10.1007/s12649-017-9914-0
Kamran U, Choi JR, Park SJ (2020) A role of activators for efficient CO2 affinity on polyacrylonitrile-based porous carbon materials. Front Chem 8. https://doi.org/10.3389/fchem.2020.00710
Karnauskas KB, Miller SL, Schapiro AC (2020) Fossil fuel combustion is driving indoor CO2 toward levels harmful to human cognition. GeoHealth 4(5). https://doi.org/10.1029/2019GH000237
Kaur B, Singh J, Gupta RK, Bhunia H (2019) Porous carbons derived from polyethylene terephthalate (PET) waste for CO2 capture studies. J Environ Manage 242:68–80. https://doi.org/10.1016/J.JENVMAN.2019.04.077
Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H (2008) Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl Therm Eng 28(8–9):865–871. https://doi.org/10.1016/j.applthermaleng.2007.07.009
Kemp L (2017) A systems critique of the 2015 Paris agreement on climate. In: Pathways to a sustainable economy: Bridging the gap between paris climate change commitments and net zero emissions, pp 25–41. https://doi.org/10.1007/978-3-319-67702-6_3/FIGURES/5
Von Kienle H, Kunze N, Mertens DH (1994) The use of activated carbon in the removal of VOC’s. Stud Environ Sci 61(C). https://doi.org/10.1016/S0166-1116(08)72064-8
Kishibayev KK, Serafin J, Tokpayev RR, Khavaza TN, Atchabarova AA, Abduakhytova DA, Ibraimov ZT, Sreńscek-Nazzal J (2021) Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture. J Environ Chem Eng 9(6):106798. https://doi.org/10.1016/j.jece.2021.106798
Klijanienko A, Lorenc-Grabowska E, Gryglewicz G (2008) Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere. Bioresour Technol 99(15):7208–7214. https://doi.org/10.1016/j.biortech.2007.12.059
Ko YG, Choi US, Kim JS, Park YS (2002) Novel synthesis and characterization of activated carbon fiber and dye adsorption modeling. Carbon 40(14):2661–2672. https://doi.org/10.1016/S0008-6223(02)00168-9
Ko D, Siriwardane R, Biegler LT (2005) Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture. Ind Eng Chem Res 44(21):8084–8094. https://doi.org/10.1021/IE050012Z
Köseoʇlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/j.apt.2015.02.006
Kougias I, Taylor N, Kakoulaki G, Jäger-Waldau A (2021) The role of photovoltaics for the European Green Deal and the recovery plan. Renew Sustain Energy Rev 144. https://doi.org/10.1016/j.rser.2021.111017
Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. https://doi.org/10.1016/j.cbpa.2013.05.004
Kumar BGP, Miranda LR, Velan M (2005) Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods. J Hazard Mater 126(1–3):63–70. https://doi.org/10.1016/j.jhazmat.2005.05.043
Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356. https://doi.org/10.1016/j.apsusc.2015.08.074
Kuttippurath J, Peter R, Singh A, Raj S (2022) The increasing atmospheric CO2 over India: Comparison to global trends. IScience 25(8):104863. https://doi.org/10.1016/J.ISCI.2022.104863
Labus K, Gryglewicz S, Machnikowski J (2014) Granular KOH-activated carbons from coal-based cokes and their CO 2 adsorption capacity. Fuel 118. https://doi.org/10.1016/j.fuel.2013.10.042
Lai JY, Ngu LH, Hashim SS (2021) A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenh Gases: Sci Technol 11(5):1076–1117. https://doi.org/10.1002/ghg.2112
László K (2005) Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids Surf, A 265(1–3):32–39. https://doi.org/10.1016/J.COLSURFA.2004.11.051
Lázaro MJ, Gálvez ME, Artal S, Palacios JM, Moliner R (2007) Preparation of steam-activated carbons as catalyst supports. J Anal Appl Pyrol 78(2):301–315. https://doi.org/10.1016/j.jaap.2006.08.007
Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11. https://doi.org/10.1016/j.jiec.2014.09.001
Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using a laboratory PSA unit: Design using breakthrough curves. Clean Technol Environ Policy 17(5):1281–1289. https://doi.org/10.1007/s10098-015-0912-2
Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443. https://doi.org/10.1016/j.rser.2014.07.093
Li K, Ling L, Lu C, Qiao W, Liu Z, Liu L, Mochida I (2001) Catalytic removal of SO2 over ammonia-activated carbon fibers. Carbon 39(12):1803–1808. https://doi.org/10.1016/S0008-6223(00)00320-1
Li D, Ma T, Zhang R, Tian Y, Qiao Y (2015a) Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139:68–70. https://doi.org/10.1016/J.FUEL.2014.08.027
Li D, Tian Y, Li L, Li J, Zhang H (2015) Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J Porous Mater 22(6):1581–1588. https://doi.org/10.1007/s10934-015-0041-7
Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J (2019) Enhanced n-doped porous carbon derived from koh-activated waste wool: A promising material for selective adsorption of CO2/CH4 and CH4/N2. Nanomaterials 9(2):266. https://doi.org/10.3390/nano9020266
Li Z, Chen T, Wu X, Luo L, Zhang Z, Li Z, Fan M, Su Z, Zhao W (2019c) Nitrogen-containing high surface area carbon cryogel from co-condensed phenol–urea–formaldehyde resin for CO 2 capture. J Porous Mater 26(3):847–854. https://doi.org/10.1007/S10934-018-0680-6/METRICS
Li S, Zheng Z, Liu S, Chi Z, Chen X, Zhang Y, Xu J (2022) Ultrahigh thermal and electric conductive graphi4te films prepared by g-C3N4 catalyzed graphitization of polyimide films. Chem Eng J 430:132530. https://doi.org/10.1016/J.CEJ.2021.132530
Li Y, Lin Y, Guo J, Xu Z, Wang B, Zhu T (2022c) Carbon consumption and regeneration of oxygen-containing functional groups on activated carbon for flue gas purification. Environ Sci Pollut Res 29(18):26599–26612. https://doi.org/10.1007/S11356-021-17724-8/FIGURES/10
Li M, Xiao R (2019) Preparation of a dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO2 Capture. Fuel Process Technol 186. https://doi.org/10.1016/j.fuproc.2018.12.015
Li J, Michalkiewicz B, Min J, Ma C, Chen X, Gong J, Mijowska E, Tang T (2019a) Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chem Eng J 360. https://doi.org/10.1016/j.cej.2018.11.204
Li F, Zimmerman AR, Hu X, Yu Z, Huang J, Gao B (2020a). One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl2. Chemosphere 254. https://doi.org/10.1016/j.chemosphere.2020.126866
Li Q, Liu S, Peng W, Zhu W, Wang L, Chen F, Shao J, Hu X (2020b) Preparation of biomass-derived porous carbons by a facile method and application to CO2 adsorption. J Taiwan Inst Chem Eng 116. https://doi.org/10.1016/j.jtice.2020.11.001
Li W, Tu W, Cheng J, Yang F, Wang X, Li L, Shang D, Zhou X, Yu C, Yuan A, Pan J (2022b) Tuning N-doping thermal-process enables biomass-carbon surface modification for potential separation effect of CO2/CH4/N2. Sep Purif Technol 282. https://doi.org/10.1016/j.seppur.2021.120001
Lillia S, Bonalumi D, Grande C, Manzolini G (2018) A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture. Int J Greenh Gas Control 74. https://doi.org/10.1016/j.ijggc.2018.04.012
Lin B, Tan Z (2021) How much impact will low oil price and carbon trading mechanism have on the value of carbon capture utilization and storage (CCUS) project? Analysis based on real option method. J Clean Prod 298. https://doi.org/10.1016/j.jclepro.2021.126768
Ling L, Li K, Liu L, Miyamoto S, Korai Y, Kawano S, Mochida I (1999) Removal of SO2 over ethylene tar pitch and cellulose based activated carbon fibers. Carbon 37(3):499–504. https://doi.org/10.1016/S0008-6223(98)00219-X
Liou TH (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158(2):129–142. https://doi.org/10.1016/j.cej.2009.12.016
Liu L, Liu Z, Yang J, Huang Z, Liu Z (2007) Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith. Carbon 45(14):2836–2842. https://doi.org/10.1016/J.CARBON.2007.08.006
Liu C, Liang X, Liu X, Wang Q, Teng N, Zhan L, Zhang R, Qiao W, Ling L (2008) Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption. Appl Surf Sci 254(9):2659–2665. https://doi.org/10.1016/j.apsusc.2007.10.026
Liu Q, Liu Z (2013) Carbon supported vanadia for multi-pollutants removal from flue gas. Fuel 108. https://doi.org/10.1016/j.fuel.2011.05.015
Liu W, Chu X, Xu H, Yang T, Qin Y, Zhao W (2022) Migration behavior of two-component gases among CO2, N2 and O2 in coal particles during adsorption. Fuel 313. https://doi.org/10.1016/j.fuel.2021.123003
Lu Z, Maroto-Valer MM, Schobert HH (2010) Catalytic effects of inorganic compounds on the development of surface areas of fly ash carbon during steam activation. Fuel 89(11):3436–3441. https://doi.org/10.1016/j.fuel.2010.05.024
Lu T, Li Q, Shao J, Wang L, Pang R, Wu X, Hu X (2021) Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption. J Taiwan Inst Chem Eng 128. https://doi.org/10.1016/j.jtice.2021.08.043
Lua AC, Yang T (2005) Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J Colloid Interface Sci 290(2):505–513. https://doi.org/10.1016/j.jcis.2005.04.063
MacArthur DE (2017) Beyond plastic waste. Science 358(6365):843. https://doi.org/10.1126/SCIENCE.AAO6749/ASSET/F2C4ADC6-5B94-4C8D-AFC9-9665187A2983/ASSETS/GRAPHIC/358_843_F2.JPEG
Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegrad 102. https://doi.org/10.1016/j.ibiod.2015.03.009
Majchrzak-Kuceba I, Wawrzynczak D, Sciubidlo A (2022) Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon. J CO2 Util 61:102027. https://doi.org/10.1016/J.JCOU.2022.102027
Mamaní A, Ramírez N, Deiana C, Giménez M, Sardella F (2019) Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption. J Environ Chem Eng 7(5):103148. https://doi.org/10.1016/j.jece.2019.103148
Mankins JC (2009) Technology readiness assessments: A retrospective. Acta Astronaut 65(9–10):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058
Manocha S, Kalpesh P, Chavda AJ, Punvar PD (2010) Activated carbon from waste biomass of psyllium husk: Effect of steam activation on surface characteristics. J Pure Appl Sci 18:88–91
Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345. https://doi.org/10.1016/j.cej.2018.01.092
Martinez CLM, Sermyagina E, Vakkilainen E (2021) Hydrothermal carbonization of chemical and biological pulp mill sludges. Energies 14(18):5693. https://doi.org/10.3390/en14185693
Martin-Gullon I, Font R (2001) Dynamic pesticide removal with activated carbon fibers. Water Res 35(2):516–520. https://doi.org/10.1016/S0043-1354(00)00262-1
Masala A, Vitillo JG, Mondino G, Martra G, Blom R, Grande CA, Bordiga S (2017) Conductive ZSM-5-Based Adsorbent for CO2 Capture: Active Phase vs Monolith. Ind Eng Chem Res 56(30):8485–8498. https://doi.org/10.1021/acs.iecr.7b01058
Masuda J, Fukuyama J, Fujii S (1999) Influence of concurrent substances on removal of hydrogen sulfide by activated carbon. Chemosphere 39(10):1611–1616. https://doi.org/10.1016/S0045-6535(99)00059-4
Meisen A, Shuai X (1997) Research and development issues in CO2 capture. Energy Convers Manag 38(SUPPL. 1). https://doi.org/10.1016/s0196-8904(96)00242-7
Mendoza Martinez CL, Sermyagina E, Saari J, Silva de Jesus M, Cardoso M, Matheus de Almeida G, Vakkilainen E (2021) Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass Bioenergy 147. https://doi.org/10.1016/j.biombioe.2021.106004
Menéndez-Díaz JA, Martín-Gullón I (2006) Chapter 1 Types of carbon adsorbents and their production. Interface Sci Technol 7(C). https://doi.org/10.1016/S1573-4285(06)80010-4
Merel J, Clausse M, Meunier F (2007) Experimental investigation on CO2 post−combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind Eng Chem Res 47(1):209–215. https://doi.org/10.1021/IE071012X
Miyawaki J, Shimohara T, Shirahama N, Yasutake A, Yoshikawa M, Mochida I, Yoon SH (2011) Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature. Appl Catal B: Environ 110. https://doi.org/10.1016/j.apcatb.2011.09.012
Mochida I, Korai Y, Shirahama M, Kawano S, Hada T, Seo Y, Yoshikawa M, Yasutake A (2000) Removal of SOx and NOx over activated carbon fibers. Carbon 38(2):227–239. https://doi.org/10.1016/S0008-6223(99)00179-7
Mohamed MM (2004) Acid dye removal: Comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J Colloid Interface Sci 272(1):28–34. https://doi.org/10.1016/j.jcis.2003.08.071
Montagnaro F, Silvestre-Albero A, Silvestre-Albero J, Rodríguez-Reinoso F, Erto A, Lancia, A, Balsamo M (2015) Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous Mesoporous Mater 209. https://doi.org/10.1016/j.micromeso.2014.09.037
Montalvo Andia J, Larrea A, Salcedo J, Reyes J, Lopez L, Yokoyama L (2020) Synthesis and characterization of chemically activated carbon from Passiflora ligularis, Inga feuilleei and native plants of South America. J Environ Chem Eng 8(4):103892. https://doi.org/10.1016/j.jece.2020.103892
Montané D, Torné-Fernández V, Fierro V (2005) Activated carbons from lignin: Kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem Eng J 106(1):1–12. https://doi.org/10.1016/j.cej.2004.11.001
Moura PAS, Vilarrasa-Garcia E, Maia DAS, Bastos-Neto M, Ania CO, Parra JB, Azevedo DCS (2018) Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsorption 24(3):279–291. https://doi.org/10.1007/s10450-018-9943-4
Moura PAS, Vilarrasa-Garcia E, Maia DAS, Bastos-Neto M, Ania CO, Parra JB, Azevedo DCS (2018b) Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas. Adsorption 24(3):279–291. https://doi.org/10.1007/S10450-018-9943-4/FIGURES/13
Mulgundmath V, Tezel FH (2010) Optimisation of carbon dioxide recovery from flue gas in a TPSA system. Adsorption 16(6):587–598. https://doi.org/10.1007/s10450-010-9255-9
Mumtaz H, Farhan M, Amjad M, Riaz F, Kazim AH, Sultan M, Farooq M, Mujtaba MA, Hussain I, Imran M, Anwar S, El-Sherbeeny AM, Siddique FA, Armaković S, Ali Q, Chaudhry IA, Pettinau A (2021) Biomass waste utilization for adsorbent preparation in CO2 capture and sustainable environment applications. Sustain Energy Technol Assess 46. https://doi.org/10.1016/j.seta.2021.101288
Muniandy L, Adam F, Mohamed AR, Ng EP (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater 197. https://doi.org/10.1016/j.micromeso.2014.06.020
Nabais JMV, Nunes P, Carrott PJM, Ribeiro Carrott MML, García AM, Díaz-Díez MA (2008) Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Process Technol 89(3):262–268. https://doi.org/10.1016/j.fuproc.2007.11.030
Nazem MA, Zare MH, Shirazian S (2020) Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Adv 10(3):1463–1475. https://doi.org/10.1039/c9ra07409k
Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS (2017) An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev 73:1289–1299. https://doi.org/10.1016/j.rser.2016.12.122
Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163. https://doi.org/10.1016/j.fuel.2015.08.057
Norman LM, Cha CY (1995) Production of activated carbon from coal chars using microwave energy. Chem Eng Commun 140(1):87–110. https://doi.org/10.1080/00986449608936456
Nowrouzi M, Younesi H, Bahramifar N (2018) Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel 223. https://doi.org/10.1016/j.fuel.2018.03.035
Nuithitikul K, Srikhun S, Hirunpraditkoon S (2010) Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon. Bioresour Technol 101(1):426–429. https://doi.org/10.1016/j.biortech.2009.07.040
Oginni O, Yakaboylu GA, Singh K, Sabolsky EM, Unal-Tosun G, Jaisi D, Khanal S, Shah A (2020) Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources. J Environ Chem Eng 8(2):103723. https://doi.org/10.1016/j.jece.2020.103723
Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM (2018) Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. J Environ Chem Eng 6(4):4245–4252. https://doi.org/10.1016/j.jece.2018.06.030
Oh WC, Jang WC (2003) Physical properties and biological effects of activated carbon fibers treated with the herbs. Carbon 41(9):1737–1742. https://doi.org/10.1016/S0008-6223(03)00119-2
Oh GH, Park CR (2002) Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel 81(3):327–336. https://doi.org/10.1016/S0016-2361(01)00171-5
Olivares-Marín M, Maroto-Valer MM (2011) Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Process Technol 92(3):322–329. https://doi.org/10.1016/j.fuproc.2010.09.022
Olivares-Marín M, Fernández-González C, Macías-García A, Gómez-Serrano V (2006) Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Appl Surf Sci 252(17):5980–5983. https://doi.org/10.1016/j.apsusc.2005.11.018
Ormad, M. P., Miguel, N., Claver, A., Matesanz, J. M., & Ovelleiro, J. L. (2008). Pesticides removal in the process of drinking water production. Chemosphere, 71(1). https://doi.org/10.1016/j.chemosphere.2007.10.006
Ould-Idriss A, Stitou M, Cuerda-Correa EM, Fernández-González C, Macías-García A, Alexandre-Franco MF, Gómez-Serrano V (2011) Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air. Fuel Process Technol 92(2):266–270. https://doi.org/10.1016/j.fuproc.2010.05.018
Ouzzine M, Serafin J, Sreńscek-Nazzal J (2021) Single step preparation of activated biocarbons derived from pomegranate peels and their CO2 adsorption performance. J Anal Appl Pyrol 160. https://doi.org/10.1016/j.jaap.2021.105338
Oya A, Wakahara T, Yoshida S (1993) Preparation of pitch-based antibacterial activated carbon fiber. Carbon 31(8):1243–1247. https://doi.org/10.1016/0008-6223(93)90082-L
Ozdemir I, Şahin M, Orhan R, Erdem M (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125. https://doi.org/10.1016/j.fuproc.2014.04.002
Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115. https://doi.org/10.1016/j.biombioe.2018.04.015
Pang R, Lu T, Shao J, Wang L, Wu X, Qian X, Hu X (2021) Highly efficient nitrogen-doped porous carbonaceous CO2Adsorbents derived from biomass. Energy Fuels 35(2):1620–1628. https://doi.org/10.1021/acs.energyfuels.0c03832
Paraschiv S, Paraschiv LS (2020) Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep 6. https://doi.org/10.1016/j.egyr.2020.11.116
Parker L (2019) How the plastic bottle went from miracle container to hated garbage. Natl Geogr
Parshetti GK, Chowdhury S, Balasubramanian R (2015) Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel 148:246–254. https://doi.org/10.1016/J.FUEL.2015.01.032
Parshetti GK, Kent Hoekman S, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol 135. https://doi.org/10.1016/j.biortech.2012.09.042
Pena J, Villot A, Gerente C (2020) Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass Bioenergy 132. https://doi.org/10.1016/j.biombioe.2019.105435
Pietrzak R, Wachowska H, Nowicki P, Babeł K (2007) Preparation of modified active carbon from brown coal by ammoxidation. Fuel Process Technol 88(4):409–415. https://doi.org/10.1016/j.fuproc.2006.11.001
Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86(5):669–674. https://doi.org/10.1016/j.apenergy.2008.07.007
Plaza MG, Pevida C, Martín CF, Fermoso J, Pis JJ, Rubiera F (2010) Developing almond shell-derived activated carbons as CO2 adsorbents. Sep Purif Technol 71(1):102–106. https://doi.org/10.1016/j.seppur.2009.11.008
Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy 99. https://doi.org/10.1016/j.apenergy.2012.05.028
Plaza MG, González AS, Pis JJ, Rubiera F, Pevida C (2014) Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Appl Energy, 114. https://doi.org/10.1016/j.apenergy.2013.09.058
Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem Eng J 140(1–3):32–42. https://doi.org/10.1016/J.CEJ.2007.08.032
Prakash Kumar BG, Shivakamy K, Miranda LR, Velan M (2006) Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. J Hazard Mater 136(3):922–929. https://doi.org/10.1016/j.jhazmat.2006.01.037
Prasankumar T, Salpekar D, Bhattacharyya S, Manoharan K, Yadav RM, Campos Mata MA, Miller KA, Vajtai R, Jose S, Roy S, Ajayan PM (2022) Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture. Carbon 199:249–257. https://doi.org/10.1016/J.CARBON.2022.07.057
Prauchner MJ, Sapag K, Rodríguez-Reinoso F (2016) Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110. https://doi.org/10.1016/j.carbon.2016.08.092
Presser V, McDonough J, Yeon SH, Gogotsi Y (2011) Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 4(8):3059. https://doi.org/10.1039/c1ee01176f
Puig-Gamero M, Esteban-Arranz A, Sanchez-Silva L, Sanchez P (2021) Obtaining activated biochar from olive stone using a bench scale high-pressure thermobalance. J Environ Chem Eng 9(4):105374. https://doi.org/10.1016/j.jece.2021.105374
Qian Q, Machida M, Tatsumoto H (2007) Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour Technol 98(2):353–360. https://doi.org/10.1016/j.biortech.2005.12.023
Quan C, Jia X, Gao N (2020) Nitrogen-doping activated biomass carbon from tea seed shell for CO2 capture and supercapacitor. Int J Energy Res 44(2):1218–1232. https://doi.org/10.1002/er.5017
Raganati F, Chirone R, Ammendola P (2020) CO2 capture by temperature swing adsorption: Working capacity as affected by temperature and CO2 partial pressure. Ind Eng Chem Res 59(8):3593–3605. https://doi.org/10.1021/acs.iecr.9b04901
Raganati F, Miccio F, Ammendola P (2021) Adsorption of carbon dioxide for post-combustion capture: A review. Energy and Fuels 35(16):12845–12868. https://doi.org/10.1021/acs.energyfuels.1c01618
Raganati F, Ammendola P, Chirone R (2014) CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity. Appl Energy 113. https://doi.org/10.1016/j.apenergy.2013.08.073
Rashidi NA, Yusup S (2017) Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J Clean Prod 168. https://doi.org/10.1016/j.jclepro.2017.09.045
Rashidi NA, Yusup S (2016) An overview of activated carbons utilization for the post-combustion carbon dioxide capture. In J CO2 Util 13:1–16. https://doi.org/10.1016/j.jcou.2015.11.002
Rattanaphan S, Rungrotmongkol T, Kongsune P (2020) Biogas improving by adsorption of CO2 on modified waste tea activated carbon. Renew Energy 145. https://doi.org/10.1016/j.renene.2019.05.104
Regufe MJ, Ferreira AFP, Loureiro JM, Rodrigues A, Ribeiro AM (2019) Electrical conductive 3D-printed monolith adsorbent for CO2 capture. Microporous Mesoporous Mater 278. https://doi.org/10.1016/j.micromeso.2019.01.009
Ren L, Zhang J, Li Y, Zhang C (2011) Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal. Chem Eng J 168(2):553–561. https://doi.org/10.1016/j.cej.2011.01.021
Reynolds SP, Ebner AD, Ritter JA (2005) New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption 11(1 SUPPL.). https://doi.org/10.1007/s10450-005-5980-x
Reza MT, Becker W, Sachsenheimer K, Mumme J (2014) Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresour Technol 161. https://doi.org/10.1016/j.biortech.2014.03.008
Ribeiro RPPL, Grande CA, Rodrigues AE (2013) Activated carbon honeycomb monolith - Zeolite 13X hybrid system to capture CO2 from flue gases employing Electric Swing Adsorption. Chem Eng Sci 104. https://doi.org/10.1016/j.ces.2013.09.011
Riboldi L, Bolland O (2015) Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants. Int J Greenh Gas Control 39. https://doi.org/10.1016/j.ijggc.2015.02.001
Riboldi L, Bolland O (2017) Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Proc 114. https://doi.org/10.1016/j.egypro.2017.03.1385
Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: Principles, methodology and applications: Second edition. In: Adsorption by powders and porous solids: Principles, methodology and applications: Second edition. https://doi.org/10.1016/C2010-0-66232-8
Rozada F, Calvo LF, García AI, Martín-Villacorta J, Otero M (2003) Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour Technol 87(3). https://doi.org/10.1016/S0960-8524(02)00243-2
Ruthven DM (1984) Principle of adsorption and Adsorption Process. In: Principles of adsorption and adsorption processes (Vol. 19).
Saadi W, Rodríguez-Sánchez S, Ruiz B, Najar-Souissi S, Ouederni A, Fuente E (2022) From pomegranate peels waste to one-step alkaline carbonate activated carbons. Prospect as sustainable adsorbent for the renewable energy production. J Environ Chem Eng 10(1):107010. https://doi.org/10.1016/j.jece.2021.107010
Şahin Ö, Saka C (2013) Preparation and characterization of activated carbon from acorn shell by physical activation with H2O-CO2 in two-step pretreatment. Bioresour Technol 136. https://doi.org/10.1016/j.biortech.2013.02.074
Sahu JN, Acharya J, Meikap BC (2010) Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Bioresour Technol 101(6):1974–1982. https://doi.org/10.1016/j.biortech.2009.10.031
Saka C (2012) BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrol 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020
Salvador F, Sánchez-Montero MJ, Montero J, Izquierdo C (2009) Hydrogen storage in carbon fibers activated with supercritical CO2: Models and the importance of porosity. J Power Sources 190(2):331–335. https://doi.org/10.1016/j.jpowsour.2009.01.024
Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2011) Post-combustion CO2 capture using solid sorbents: A review. Ind Eng Chem Res 51(4):1438–1463. https://doi.org/10.1021/ie200686q
Saqib NU, Baroutian S, Sarmah AK (2018) Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization. Biores Technol 266:357–363. https://doi.org/10.1016/J.BIORTECH.2018.06.112
Satyawali Y, Balakrishnan M (2009) Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent. J Hazard Mater 170(1):457–465. https://doi.org/10.1016/j.jhazmat.2009.04.074
Scharf RG, Johnston RW, Semmens MJ, Hozalski RM (2010) Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life. Water Res 44(3):769–780. https://doi.org/10.1016/j.watres.2009.10.018
Schneider P (1995) Adsorption isotherms of microporous-mesoporous solids revisited. Appl Catal A 129(2):157–165. https://doi.org/10.1016/0926-860X(95)00110-7
Şencan A, Karaboyacı M, Kılıç M (2015) Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environ Sci Pollut Res 22(5):3238–3248. https://doi.org/10.1007/s11356-014-2974-9
Serafin J, Cruz OF (2022) Promising activated carbons derived from common oak leaves and their application in CO2 storage. J Environ Chem Eng 10(3):107642. https://doi.org/10.1016/J.JECE.2022.107642
Serafin J, Dziejarski B (2023) Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous Mesoporous Mater 354:112513. https://doi.org/10.1016/J.MICROMESO.2023.112513
Serafin J, Narkiewicz U, Morawski AW, Wróbel RJ, Michalkiewicz B (2017) Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J CO2 Util 18:73–79. https://doi.org/10.1016/j.jcou.2017.01.006
Serafin J, Ouzzine M, Cruz Junior OF, Sreńscek-Nazzal J (2021) Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass Bioenergy 144:105925. https://doi.org/10.1016/j.biombioe.2020.105925
Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J (2023) Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon 201:633–647. https://doi.org/10.1016/J.CARBON.2022.09.013
Serafin J, Baca M, Biegun M, Mijowska E, Kaleńczuk RJ, Sreńscek-Nazzal J, Michalkiewicz B (2019) Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl Surf Sci 497. https://doi.org/10.1016/j.apsusc.2019.143722
Serafin J, Ouzzine M, Cruz OF, Sreńscek-Nazzal J, Campello Gómez I, Azar FZ, Rey Mafull CA, Hotza D, Rambo CR (2021b) Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Manag 136. https://doi.org/10.1016/j.wasman.2021.10.025
Serafin J, Kiełbasa K, Michalkiewicz B (2022) The new tailored nanoporous carbons from the common polypody (Polypodium vulgare): The role of textural properties for enhanced CO2 adsorption. Chem Eng J 429. https://doi.org/10.1016/j.cej.2021.131751
Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765. https://doi.org/10.1039/c0ee00784f
Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenerg 35(7):3152–3159. https://doi.org/10.1016/J.BIOMBIOE.2011.04.032
Sevilla M, Falco C, Titirici MM, Fuertes AB (2012) High-performance CO2 sorbents from algae. RSC Adv 2(33):12792. https://doi.org/10.1039/c2ra22552b
Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89(2):143–151. https://doi.org/10.1016/J.JAAP.2010.07.006
Shah G, Ahmad E, Pant KK, Vijay VK (2021) Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption. Int J Hydrogen Energy 46(9):6588–6612. https://doi.org/10.1016/j.ijhydene.2020.11.116
Shahkarami S, Azargohar R, Dalai AK, Soltan J (2015) Breakthrough CO2 adsorption in bio-based activated carbons. J Environ Sci (China) 34. https://doi.org/10.1016/j.jes.2015.03.008
Shao L, Sang Y, Huang J (2019) Imidazole-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Microporous Mesoporous Mater 275. https://doi.org/10.1016/j.micromeso.2018.08.025
Sharma LK, Verma RK (2021) Latitudinal fluctuation in global concentration of CO2 and CH4 from shortwave infrared spectral observation by GOSAT during COVID-19. Int J Digit Earth 14(12):1882–1896. https://doi.org/10.1080/17538947.2021.1980126
Shen Y (2020) A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 134:105479. https://doi.org/10.1016/j.biombioe.2020.105479
Shen C, Yu J, Li P, Grande CA, Rodrigues AE (2011) Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption 17(1):179–188. https://doi.org/10.1007/s10450-010-9298-y
Shen W, Zhang S, He Y, Li J, Fan W (2011b) Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. J Mater Chem 21(36):14036–14040. https://doi.org/10.1039/C1JM12585K
Shen C, Liu Z, Li P, Yu J (2012a) Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads. Ind Eng Chem Res 51(13):5011–5021. https://doi.org/10.1021/IE202097Y
Shen W, He Y, Zhang S, Li J, Fan W (2012) Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem 5(7):1274–1279. https://doi.org/10.1002/cssc.201100735
Shen F, Wang Y, Li L, Zhang K, Smith RL, Qi X (2018) Porous carbonaceous materials from hydrothermal carbonization and KOH activation of corn stover for highly efficient CO2 capture. Chem Eng Commun 205(4). https://doi.org/10.1080/00986445.2017.1367671
Sidheswaran MA, Destaillats H, Sullivan DP, Cohn S, Fisk WJ (2012) Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build Environ 47(1):357–367. https://doi.org/10.1016/j.buildenv.2011.07.002
Singh G, Lakhi KS, Kim IY, Kim S, Srivastava P, Naidu R, Vinu A (2017b) Highly efficient method for the synthesis of activated mesoporous biocarbons with extremely high surface area for high-pressure CO2 adsorption. ACS Appl Mater Interfaces 9(35):29782–29793. https://doi.org/10.1021/acsami.7b08797
Singh G, Kim IY, Lakhi KS, Srivastava P, Naidu R, Vinu, A (2017a) Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 116. https://doi.org/10.1016/j.carbon.2017.02.015
Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017c) Recycling of plastic solid waste: A state of art review and future applications. Compos B Eng 115. https://doi.org/10.1016/j.compositesb.2016.09.013
Singh J, Basu S, Bhunia H (2019a) CO2 capture by modified porous carbon adsorbents: Effect of various activating agents. J Taiwan Inst Chem Eng 102. https://doi.org/10.1016/j.jtice.2019.06.011
Singh J, Basu S, Bhunia H (2019b) Dynamic CO2 adsorption on activated carbon adsorbents synthesized from polyacrylonitrile (PAN): Kinetic and isotherm studies. Microporous Mesoporous Mater 280. https://doi.org/10.1016/j.micromeso.2019.02.031
Singh J, Bhunia H, Basu S (2019c). Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios. J Environ Manag 250. https://doi.org/10.1016/j.jenvman.2019.109457
Sircar S, Hufton JR (2000) Why does the linear driving force model for adsorption kinetics work? Adsorption 6(2):137–147. https://doi.org/10.1023/A:1008965317983
Siriwardane RV, Shen MS, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15(2):279–284. https://doi.org/10.1021/ef000241s
Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A Review of biochar and its use and function in soil. Adv Agron 105(1):47–82. https://doi.org/10.1016/S0065-2113(10)05002-9
Song C, Tonghua AE, Ae W, Qiu J, Yiming AE, Ae C, Cai T (2008) Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. https://doi.org/10.1007/s10934-006-9044-8
Soto ML, Moure A, Domínguez H, Parajó JC (2011) Recovery, concentration and purification of phenolic compounds by adsorption: A review. J Food Eng 105(1):1–27. https://doi.org/10.1016/j.jfoodeng.2011.02.010
Di Stasi C, Alvira D, Greco G, González B, & Manyà JJ (2019) Physically activated wheat straw-derived biochar for biomass pyrolysis vapors upgrading with high resistance against coke deactivation. Fuel 255. https://doi.org/10.1016/j.fuel.2019.115807
Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour Technol 143. https://doi.org/10.1016/j.biortech.2013.05.098
Straub J (2015) In search of technology readiness level (TRL) 10. Aerosp Sci Technol 46. https://doi.org/10.1016/j.ast.2015.07.007
Su J, Lua AC (2007) Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide. J Membr Sci 305(1–2):263–270. https://doi.org/10.1016/J.MEMSCI.2007.08.010
Suárez L, Centeno TA (2020) Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors. J Power Sources 448. https://doi.org/10.1016/j.jpowsour.2019.227413
Subraveti SG, Pai KN, Rajagopalan AK, Wilkins NS, Rajendran A, Jayaraman A, Alptekin G (2019) Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture. Appl Energy 254. https://doi.org/10.1016/j.apenergy.2019.113624
Suhaimi A, Abdulhameed AS, Jawad AH, Yousef TA, Al Duaij OK, ALOthman ZA, Wilson LD (2022) Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: An optimized removal process and tailored adsorption mechanism of crystal violet dye. Diam Relat Mater 130:109456. https://doi.org/10.1016/J.DIAMOND.2022.109456
Sun Y, Webley PA (2011) Preparation of activated carbons with large specific surface areas from biomass corncob and their adsorption equilibrium for methane, carbon dioxide, nitrogen, and hydrogen. Ind Eng Chem Res 50(15). https://doi.org/10.1021/ie1024003
Sun K, Jiang JC (2010) Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy 34(4):539–544. https://doi.org/10.1016/j.biombioe.2009.12.020
Suriapparao DV, Tejasvi R (2022) A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Process Saf Environ Prot 162:435–462. https://doi.org/10.1016/J.PSEP.2022.04.024
Surra E, Ribeiro RPPL, Santos T, Bernardo M, Mota JPB, Lapa N, Esteves IAAC (2022) Evaluation of activated carbons produced from Maize Cob Waste for adsorption-based CO2 separation and biogas upgrading. J Environ Chem Eng 10(1):107065. https://doi.org/10.1016/j.jece.2021.107065
Suzuki T, Sakoda A, Suzuki M, Izumi J (1997) Recovery of carbon dioxide from stack gas by piston-driven ultra-rapid PSA. J Chem Eng Japan 30(6):1026–1033. https://doi.org/10.1252/jcej.30.1026
Tancredi N, Medero N, Möller F, Píriz J, Plada C, Cordero T (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J Colloid Interface Sci 279(2):357–363. https://doi.org/10.1016/J.JCIS.2004.06.067
Teng H, Lin HC, Teng H (1998) Activated carbon production from low ash subbituminous coal with CO2 activation. AIChE J 44(5). https://doi.org/10.1002/aic.690440514
Tien C (2018) Introduction to adsorption: Basics, analysis, and applications. In: Introduction to adsorption: Basics, analysis, and applications. https://doi.org/10.1016/C2018-0-00297-2
Titirici MM, Thomas A, Yu SH, Müller JO, Antonietti M (2007) A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19(17):4205–4212. https://doi.org/10.1021/cm0707408
Tiwari D, Goel C, Bhunia H, Bajpai PK (2016) Novel nanostructured carbons derived from epoxy resin and their adsorption characteristics for CO2 capture. RSC Adv 6(100):97728–97738. https://doi.org/10.1039/c6ra18291g
Tiwari D, Bhunia H, Bajpai PK (2017) Epoxy based oxygen enriched porous carbons for CO2 capture. Appl Surf Sci 414:380–389. https://doi.org/10.1016/J.APSUSC.2017.04.128
Tlili N, Grévillot G, Vallières C (2009) Carbon dioxide capture and recovery by means of TSA and/or VSA. Int J Greenh Gas Control 3(5):519–527. https://doi.org/10.1016/j.ijggc.2009.04.005
Tomaszewicz M, Tomaszewicz G, Sciazko M (2017) Experimental study on kinetics of coal char–CO2 reaction by means of pressurized thermogravimetric analysis. J Therm Anal Calorim 130(3):2315–2330. https://doi.org/10.1007/s10973-017-6538-3
Tran HN, You SJ, Chao HP (2017) Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manag 188. https://doi.org/10.1016/j.jenvman.2016.12.003
Travis W, Gadipelli S, Guo Z (2015) Superior CO2 adsorption from waste coffee ground derived carbons. RSC Adv 5(37):29558–29562. https://doi.org/10.1039/c4ra13026j
Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodríguez-Castellón E, Bandosz TJ (2018) S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 135:104–111. https://doi.org/10.1016/J.CARBON.2018.04.018
Ubago-Pérez R, Carrasco-Marín F, Fairén-Jiménez D, Moreno-Castilla C (2006) Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous Mesoporous Mater 92(1–3):64–70. https://doi.org/10.1016/j.micromeso.2006.01.002
Uddin K, Pal A, Saha BB (2020) Improved CO2adsorption onto chemically activated spherical phenol resin. J CO2 Util 41:101255. https://doi.org/10.1016/j.jcou.2020.101255
Unur E (2013) Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Microporous Mesoporous Mater 168:92–101. https://doi.org/10.1016/J.MICROMESO.2012.09.027
Valix M, Cheung WH, Zhang K (2006) Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J Hazard Mater 135(1–3):395–405. https://doi.org/10.1016/j.jhazmat.2005.11.077
Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35(1):232–242. https://doi.org/10.1016/j.renene.2009.04.019
van Oss CJ (1990) A review of: “Active Carbon.” R.C. Bansal, J.B. Donnet and F. Stoeckli; Marcel Dekker, New York, 1988. pp. 482, $135.00. J Dispers Sci Technol 11(3). https://doi.org/10.1080/01932699008943255
Vargas DP, Giraldo L, Erto A, Moreno-Piraján JC (2013) Chemical modification of activated carbon monoliths for CO2 adsorption. J Therm Anal Calorim 114(3):1039–1047. https://doi.org/10.1007/s10973-013-3086-3
Verougstraete B, Schoukens M, Sutens B, Vanden Haute N, De Vos Y, Rombouts M, Denayer JFM (2022) Electrical swing adsorption on 3D-printed activated carbon monoliths for CO2 capture from biogas. Sep Purif Technol 299:121660. https://doi.org/10.1016/J.SEPPUR.2022.121660
Vilella PC, Lira JA, Azevedo DCS, Bastos-Neto M, Stefanutti R (2017) Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Ind Crops Prod 109. https://doi.org/10.1016/j.indcrop.2017.08.017
Viñuales JE, Depledge J, Reiner DM, Lees E (2016) Climate policy after the Paris 2015 climate conference. Clim Policy. 17(1):1–8. https://doi.org/10.1080/14693062.2016.1242060
Vitolo S, Seggiani M (2002) Mercury removal from geothermal exhaust gas by sulfur-impregnated and virgin activated carbons. Geothermics 31(4):431–442. https://doi.org/10.1016/S0375-6505(02)00005-6
Vivo-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F, Faria RPV, Ribeiro AM, Ferreira AFP, Rodrigues AE (2017) Biogas upgrading by selective adsorption onto CO2 activated carbon from wood pellets. J Environ Chem Eng 5(2):1386–1393. https://doi.org/10.1016/j.jece.2017.02.015
Wahby A, Ramos-Fernández JM, Martínez-Escandell M, Sepúveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3(8):974–981. https://doi.org/10.1002/cssc.201000083
Wang J, Heerwig A, Lohe MR, Oschatz M, Borchardt L, Kaskel S (2012a) Fungi-based porous carbons for CO2 adsorption and separation. J Mater Chem 22(28):13911–13913. https://doi.org/10.1039/C2JM32139D
Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, Li K (2020) Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2capture: a route to a closed carbon loop. Green Chem 22(20):6836–6845. https://doi.org/10.1039/d0gc01613f
Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012b). Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interf 4(11). https://doi.org/10.1021/am302077c
Wang Y, Yu Y, Huang H, Yu C, Fang H, Zhou C, Yin X, Chen, W, Guo X (2022) Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization. Sci Total Environ 803. https://doi.org/10.1016/j.scitotenv.2021.149874
Webley PA, Xiao P, Zhang J (2005) Recovery of carbon dioxide from flue gas streams by vacuum swing adsorption. AIChE Annual Meeting, Conference Proceedings
Wei H, Deng S, Hu B, Chen Z, Wang B, Huang J, Yu G (2012) Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores. ChemSusChem 5(12):2354–2360. https://doi.org/10.1002/cssc.201200570
Wickramaratne NP, Jaroniec M (2013a) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5(5):1849–1855. https://doi.org/10.1021/AM400112M/SUPPL_FILE/AM400112M_SI_001.PDF
Wickramaratne NP, Jaroniec M (2013) Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J Mater Chem A 1(1):112–116. https://doi.org/10.1039/c2ta00388k
Wu FC, Tseng RL (2006) Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. J Colloid Interface Sci 294(1):21–30. https://doi.org/10.1016/j.jcis.2005.06.084
Wu FC, Tseng RL, Juang RS (2005) Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water. Sep Purif Technol 47(1–2):10–19. https://doi.org/10.1016/j.seppur.2005.03.013
Wu FC, Wu PH, Tseng RL, Juang RS (2010) Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. J Environ Manag 91(5):1097–1102. https://doi.org/10.1016/j.jenvman.2009.12.011
Yagmur E, Gokce Y, Tekin S, Semerci NI, Aktas Z (2020) Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2. Fuel 267:117232. https://doi.org/10.1016/j.fuel.2020.117232
Yan H, Fu Q, Zhou Y, Li D, Zhang D (2016) CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization. Int J Greenh Gas Control 51. https://doi.org/10.1016/j.ijggc.2016.04.005
Yang T, Lua AC (2003) Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J Colloid Interface Sci 267(2):408–417. https://doi.org/10.1016/S0021-9797(03)00689-1
Yang F, Wang J, Liu L, Zhang P, Yu W, Deng Q, Zeng Z, Deng S (2018) Synthesis of Porous Carbons with High N-Content from Shrimp Shells for Efficient CO2-Capture and Gas Separation. ACS Sustain Chem Eng 6(11):15550–15559. https://doi.org/10.1021/acssuschemeng.8b03995
Yang H, Chen P, Chen W, Li K, Xia M, Xiao H, Chen X, Chen Y, Wang X, Chen H (2022) Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass. Fuel Process Technol 230. https://doi.org/10.1016/j.fuproc.2022.107215
Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour Technol 102(10):6273–6278. https://doi.org/10.1016/j.biortech.2011.03.006
Yorgun S, Vural N, Demiral H (2009) Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater 122(1–3):189–194. https://doi.org/10.1016/j.micromeso.2009.02.032
You YY, Liu XJ (2019) Modeling of CO2 adsorption and recovery from wet flue gas by using activated carbon. Chem Eng J 369. https://doi.org/10.1016/j.cej.2019.03.118
Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899. https://doi.org/10.1002/cssc.200800169
Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12(5):745–769. https://doi.org/10.4209/aaqr.2012.05.0132
Yuan X, Li S, Jeon S, Deng S, Zhao L, Lee KB (2020) Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis. J Hazard Mater 399. https://doi.org/10.1016/j.jhazmat.2020.123010
Yuan M, Li C, Zhang B, Wang J, Zhu J, Ji J, Ma Y (2021) A mild and one-pot method to activate lignin-derived biomass by using boric acid for aqueous tetracycline antibiotics removal in water. Chemosphere 280. https://doi.org/10.1016/j.chemosphere.2021.130877
Yue XL, Gao QX (2018) Contributions of natural systems and human activity to greenhouse gas emissions. Adv Clim Chang Res 9(4):243–252. https://doi.org/10.1016/J.ACCRE.2018.12.003
Zabaniotou A, Stavropoulos G, Skoulou V (2008) Activated carbon from olive kernels in a two-stage process: Industrial improvement. Bioresour Technol 99(2):320–326. https://doi.org/10.1016/j.biortech.2006.12.020
Zbair M, Ainassaari K, El Assal Z, Ojala S, El Ouahedy N, Keiski RL, Bensitel M, Brahmi R (2018) Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environ Sci Pollut Res 25(35):35657–35671. https://doi.org/10.1007/s11356-018-3455-3
Zhang XQ, Li WC, Lu AH (2015) Designed porous carbon materials for efficient CO2 adsorption and separation. Xinxing Tan Cailiao/New Carbon Mater 30(6):481–501. https://doi.org/10.1016/S1872-5805(15)60203-7
Zhang C, Song W, Ma Q, Xie L, Zhang X, Guo H (2016) Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy Fuels 30(5):4181–4190. https://doi.org/10.1021/acs.energyfuels.5b02764
Zhang Y, Zhang P, Yu W, Wang J, Deng Q, Yang J, Zeng Z, Xu M, Deng S (2018) Facile and controllable preparation of ultramicroporous biomass-derived carbons and application on selective adsorption of gas-mixtures. Ind Eng Chem Res 57(42):14191–14201. https://doi.org/10.1021/acs.iecr.8b02139
Zhang T, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC (2004) Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem Eng J 105(1–2). https://doi.org/10.1016/j.cej.2004.06.011
Zhang J, Shao J, Jin Q, Li Z, Zhang X, Chen Y, Zhang S, Chen H (2019) Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 252. https://doi.org/10.1016/j.fuel.2019.04.096
Zhao Q, Wu F, Xie K, Singh R, Zhao J, Xiao P, Webley PA (2018) Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA). Chem Eng J 336:659–668. https://doi.org/10.1016/J.CEJ.2017.11.167
Zhao Z, Ma C, Chen F, Xu G, Pang R, Qian X, Shao J, Hu X (2021) Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass Bioenergy 145:105969. https://doi.org/10.1016/J.BIOMBIOE.2021.105969
Zhao H, Zhong H, Jiang Y, Li H, Tang P, Li D, Feng Y (2022) Porous ZnCl2-activated carbon from shaddock peel: methylene blue adsorption behavior. Materials 15(3):895. https://doi.org/10.3390/ma15030895
Zhao Q, Wu F, He Y, Xiao P, Webley PA (2017) Impact of operating parameters on CO2 capture using carbon monolith by Electrical Swing Adsorption technology (ESA). Chem Eng J 327. https://doi.org/10.1016/j.cej.2017.06.123
Zhao Q, Wu F, Men Y, Fang X, Zhao J, Xiao P, Webley PA, Grande CA (2019) CO2 capture using a novel hybrid monolith (H-ZSM5/activated carbon) as adsorbent by combined vacuum and electric swing adsorption (VESA). Chem Eng J 358. https://doi.org/10.1016/j.cej.2018.09.196
Zhu Y, Gao J, Li Y, Sun F, Gao J, Wu S, Qin Y (2012) Preparation of activated carbons for SO2 adsorption by CO2 and steam activation. J Taiwan Inst Chem Eng 43(1):112–119. https://doi.org/10.1016/J.JTICE.2011.06.009
Zhu XL, Wang PY, Peng C, Yang J, Yan X. Bin (2014) Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chin Chem Lett 25(6):929–932. https://doi.org/10.1016/j.cclet.2014.03.039
Zhu X, Liu Y, Qian F, Zhang S, Chen J (2015) Investigation on the physical and chemical properties of hydrochar and its derived pyrolysis char for their potential application: Influence of hydrothermal carbonization conditions. Energy and Fuels 29(8):5222–5230. https://doi.org/10.1021/acs.energyfuels.5b00512
Zhu B, Shang C, Guo Z (2016) Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO2 capture capacities. ACS Sustain Chem Eng 4(3):1050–1057. https://doi.org/10.1021/acssuschemeng.5b01113
Zuo S, Yang J, Liu J, Cai X (2009) Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material. Fuel Process Technol 90(7–8):994–1001. https://doi.org/10.1016/j.fuproc.2009.04.003
Zuo S, Yang J, Liu J (2010) Effects of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation. Carbon 48(11):3293–3295. https://doi.org/10.1016/j.carbon.2010.04.042
Author information
Authors and Affiliations
Contributions
Jarosław Serafin: Conceptualization, Formal análisis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization, Supervision. Bartosz Dziejarski: Conceptualization, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization.
Corresponding author
Ethics declarations
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Additional information
Responsible Editor: Tito Roberto Cadaval Jr
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Serafin, J., Dziejarski, B. Activated carbons—preparation, characterization and their application in CO2 capture: A review. Environ Sci Pollut Res 31, 40008–40062 (2024). https://doi.org/10.1007/s11356-023-28023-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-023-28023-9