Skip to main content

Advertisement

Log in

The genus Artemia, the nanoplastics, the microplastics, and their toxic effects: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plastic pollution is a threat to the marine environment, the destination of mismanaged plastic. Due to reduced size, microplastics and nanoplastics (MNPs) can interact with a wide range of organisms. Non-selective filter feeder zooplanktonic microcrustaceans are potential targets for MNP accumulation. Zooplankton is a key group for the food web, linking primary producers to secondary consumers. The genus Artemia has been widely used to investigate the effects of plastic particles on the biota. The present work critically reviewed the ecotoxicological studies about plastic particles and Artemia, pointing out methodological aspects and effects caused by MNPs, highlighting their importance and limitations, and suggesting directions for future research. We analyzed twenty-one parameters into four categories: characteristics of plastic particles, general particularities of brine shrimp, methodologies of the cultures, and toxicological parameters. The principal gaps in the area are the lack of methodological standardization regarding the physicochemical parameters of the particles, the biology of the animals, and culture conditions. Even though few studies performed realistic exposure scenarios, results indicate MNPs as potential harmful contaminants to microcrustaceans. The main effects reported were particle ingestion and accumulation followed by reduced brine shrimp survival/mobility. The present review poses Artemia as suitable animals for investigations concerning the risks of MNP exposure at the individual level and to the ecosystems, although protocol standardization is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  • Albendín MG, Aranda V, Coello MD, González-Gómez C, Rodríguez-Barroso R, Quiroga JM, Arellano JM (2021) Pharmaceutical products and pesticides toxicity associated with microplastics (Polyvinyl chloride) in Artemia salina. Int J Environ Res Public Health 18(20):10773. https://doi.org/10.3390/ijerph182010773

  • Amelia TSM, Khalik WMAWM, Ong MC, Shao YT, Pan HJ, Bhubalan K (2021) Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog Earth Planet Sci 8. https://doi.org/10.1186/s40645-020-00405-4

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

  • APAT; CNR-IRSA (2003) Metodo di valutazione della tossicità acuta con Artemia sp. In: APAT (ed) Metodi analitici per le acque, 1st edn. APAT, Roma, pp 1043–1050.

  • Asem A, Rastegar-Pouyani N, de Los Ríos-Escalante P (2010) El género Artemia Leach, 1819 (Crustacea: Branchiopoda). I. Descripciones taxonómicas verdaderas y falsas. Lat Am J Aquat Res 38:501–506. https://doi.org/10.3856/vol38-issue3-fulltext-14

    Article  Google Scholar 

  • Artoxkit® (2014) MicroBioTest. http://www.microbiotests.be/toxkits/artoxkitm.pdf

  • Ferdous Z, Muktadir AKM (2009) A Review: Potentiality of Zooplankton as Bioindicator. Am J Appl Sci 6:1815–1819. https://doi.org/10.3844/ajassp.2009.1815.1819

    Article  Google Scholar 

  • Asil SM, Fereidouni AE, Ouraji H, Khalili KJ (2012) The Influence of Light (Intensity and Duration) on the Cysts Hatching Parameters and Nauplii Growth of Artemia urmiana (Günther 1890). World J Zool 7:60–64. https://doi.org/10.5829/idosi.wjz.2012.7.1.61159

    Google Scholar 

  • Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

  • Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res 128:2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  Google Scholar 

  • Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T (2016) Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ Toxicol Chem 35:1656–1666. https://doi.org/10.1002/etc.3361

    Article  CAS  Google Scholar 

  • Baxevanis AD, Kappas I, Abatzopoulos TJ (2006) Molecular phylogenetics and asexuality in the brine shrimp Artemia. Mol Phylogenet Evol 40:724–738. https://doi.org/10.1016/j.ympev.2006.04.010

    Article  CAS  Google Scholar 

  • Bergami E, Bocci E, Vannuccini ML, Monopoli M, Salvati A, Dawson KA, Corsi I (2016) Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicol Environ Saf 123:18–25. https://doi.org/10.1016/j.ecoenv.2015.09.021

    Article  CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicol 189:159–169. https://doi.org/10.1016/j.aquatox.2017.06.008

  • Bergami E, Rota E, Caruso T, Birarda G, Vaccari L, Corsi I (2020) Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus . Biol Lett 16:20200093. https://doi.org/10.1098/rsbl.2020.0093

  • Besseling E, Foekema EM, Van Franeker JA, Leopold MF, Kühn S, Bravo Rebolledo EL, Heße E, Mielke L, IJzer J, Kamminga P, Koelmans AA (2015) Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar Pollut Bull 95:248–252. https://doi.org/10.1016/j.marpolbul.2015.04.007

  • Botterell ZLR, Beaumont N, Dorrington T, Steinke M, Thompson RC, Lindeque PK (2019) Bioavailability and effects of microplastics on marine zooplankton: A review. Environ Pollut 245:98–110. https://doi.org/10.1016/j.envpol.2018.10.065

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review. J Hazard Mater 283:764–777. https://doi.org/10.1016/j.jhazmat.2014.10.021

  • Bour A, Hossain S, Taylor M, Sumner M, Carney Almroth B (2020) Synthetic Microfiber and Microbead Exposure and Retention Time in Model Aquatic Species Under Different Exposure Scenarios. Front Environ Sci 8. https://doi.org/10.3389/fenvs.2020.00083

  • Boyd RD, Pichaimuthu SK, Cuenat A (2011) New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf A Physicochem Eng Asp 387:35–42. https://doi.org/10.1016/j.colsurfa.2011.07.020

    Article  CAS  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. https://doi.org/10.1021/es800249a

    Article  CAS  Google Scholar 

  • Bryant G, Thomas JC (1995) Improved Particle Size Distribution Measurements Using Multiangle Dynamic Light Scattering. Langmuir 11:2480–2485

  • Casado MP, Macken A, Byrne HJ (2013) Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ Int 51:97–105. https://doi.org/10.1016/j.envint.2012.11.001

    Article  CAS  Google Scholar 

  • Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7. https://doi.org/10.1371/journal.pone.0032254

  • Cholewińska P, Moniuszko H, Wojnarowski K, Pokorny P, Szeligowska N, Dobicki W, Polechoński R, Górniak W (2022) The Occurrence of Microplastics and the Formation of Biofilms by Pathogenic and Opportunistic Bacteria as Threats in Aquaculture. Int J Environ Res Public Health 19. https://doi.org/10.3390/IJERPH19138137

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

  • Cole M (2016) A novel method for preparing microplastic fibers. Sci Rep 6. https://doi.org/10.1038/srep34519

  • Comeche A, Martín-Villamil M, Picó Y, Varó I (2017) Effect of methylparaben in Artemia franciscana. Comparative Biochemistry and Physiology Part C: Toxicol & Pharmacol 199:98–105. https://doi.org/10.1016/J.CBPC.2017.04.004

  • da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T (2016) (Nano)plastics in the environment - Sources, fates and effects. Sci Total Environ 566–567:15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041

  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol. https://doi.org/10.1021/es502569w

  • Dojmi Di Delupis G, Rotondo V (1988) Phototaxis in aquatic invertebrates: possible use in ecotoxicity tests. Ecotoxicol Environ Saf 16:189–193. https://doi.org/10.1016/0147-6513(88)90049-8

    Article  CAS  Google Scholar 

  • Rossi G, Barnoud J, Monticelli L (2014) Polystyrene Nanoparticles Perturb Lipid Membranes. J Phys Chem Lett 5:241–246. https://doi.org/10.1021/jz402234c

    Article  CAS  Google Scholar 

  • do Prado Leite I, Menegotto A, da Cunha Lana P, Júnior LLM (2022) A new look at the potential role of marine plastic debris as a global vector of toxic benthic algae. Sci Total Environ 838. https://doi.org/10.1016/J.SCITOTENV.2022.156262

  • Dvorak P, Benova K, Vitek J (2012) Alternative Biotest on Artemia franciscana. In: Ecotoxicology. pp 51–74

  • Eom HJ, Nam SE, Rhee JS (2020) Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp. Mol Cell Toxicol 16:233–243. https://doi.org/10.1007/s13273-020-00088-4

    Article  CAS  Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS One 9. https://doi.org/10.1371/journal.pone.0111913

  • Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar Pollut Bull 58:1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025

    Article  CAS  Google Scholar 

  • Ferreira I, Venâncio C, Lopes I, Oliveira M (2019) Nanoplastics and marine organisms: What has been studied? Environ Toxicol Pharmacol 67:1–7. https://doi.org/10.1016/j.etap.2019.01.006

  • Foley CJ, Feiner ZS, Malinich TD, Höök TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ 631–632:550–559. https://doi.org/10.1016/j.scitotenv.2018.03.046

  • Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49. https://doi.org/10.1016/J.MARENVRES.2015.06.001

  • Fred-Ahmadu OH, Bhagwat G, Oluyoye I, Benson NU, Ayejuyo OO, Palanisami T (2020) Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci Total Environ 706:1–20. https://doi.org/10.1016/j.scitotenv.2019.135978

  • Gambardella C, Morgana S, Ferrando S, Bramini M, Piazza V, Costa E, Garaventa F, Faimali M (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Environ Saf 145:250–257. https://doi.org/10.1016/j.ecoenv.2017.07.036

  • Ganesh Kumar A, Anjana, Hinduja M, Sujitha K, Dharani G (2020) Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions. Mar Pollut Bull 150. https://doi.org/10.1016/j.marpolbul.2019.110733

  • Gangadoo S, Owen S, Rajapaksha P, Plaisted K, Cheeseman S, Haddara H, Truong VK, Ngo ST, Vu V V., Cozzolino D, Elbourne A, Crawford R, Latham K, Chapman J (2020) Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. Sci Total Environ 732:1–21. https://doi.org/10.1016/j.scitotenv.2020.138792

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:1–5. https://doi.org/10.1126/sciadv.1700782

  • Gigault J, Halle A ter, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S (2018) Current opinion: What is a nanoplastic? Environ Pollut 235:1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024

  • Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A (2019) Microplastics in cosmetics: Environmental issues and needs for global bans. Environ Toxicol Pharmacol 68:75–79. https://doi.org/10.1016/j.etap.2019.03.007

  • Han X, Zheng Y, Dai C, Duan H, Gao M, Ali MR, Sui L (2021) Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana. J Oceanol Limnol 39:979–988. https://doi.org/10.1007/s00343-020-0118-2

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48. https://doi.org/10.1016/j.envpol.2011.08.052

    Article  CAS  Google Scholar 

  • International Organization for Standardization (2017) ISO/TS 20787:2017 Nanotechnologies - aquatic toxicity assessment of manufactured nanomaterials in saltwater lakes using Artemia sp. Nauplii. Geneve

  • Jeyavani J, Sibiya A, Bhavaniramya S, Mahboob S, Al-Ghanim KA, Nisa Z un, Riaz MN, Nicoletti M, Govindarajan M, Vaseeharan B (2022) Toxicity evaluation of polypropylene microplastic on marine microcrustacean Artemia salina: An analysis of implications and vulnerability. Chemosphere 296:133990. https://doi.org/10.1016/j.chemosphere.2022.133990

  • Johari SA, Rasmussen K, Gulumian M, Ghazi-Khansari M, Tetarazako N, Kashiwada S, Asghari S, Park JW, Yu IJ (2019) Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using Artemia sp. nauplii. Toxicol Mech Methods 29:95–109. https://doi.org/10.1080/15376516.2018.1512695

  • Kedzierski M, Palazot M, Soccalingame L, Falcou-Préfol M, Gorsky G, Galgani F, Bruzaud S, Pedrotti ML (2022) Chemical composition of microplastics floating on the surface of the Mediterranean Sea. Mar Pollut Bull 174. https://doi.org/10.1016/j.marpolbul.2021.113284

  • Kim A, Ng W, Bernt W, Cho N (2019) Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci Rep 1–14. https://doi.org/10.1038/s41598-019-38915-x

    Article  CAS  Google Scholar 

  • Kim L, Kim SA, Kim TH, Kim J, An YJ (2021) Synthetic and natural microfibers induce gut damage in the brine shrimp Artemia franciscana. Aquatic Toxicol 232. https://doi.org/10.1016/j.aquatox.2021.105748

  • Kim L, Cui R, Kwak J Il, An YJ (2022) Sub-acute exposure to nanoplastics via two-chain trophic transfer: From brine shrimp Artemia franciscana to small yellow croaker Larimichthys polyactis. Mar Pollut Bull 175:113314. https://doi.org/10.1016/j.marpolbul.2021.113314

  • Kiørboe T (2011) How zooplankton feed: Mechanisms, traits and trade-offs. Biol Rev 86:311–339

  • Koelmans AA, Besseling E, Shim WJ (2015) Nanoplastics in the aquatic environment. Critical review. In: Marine Anthropogenic Litter. Springer International Publishing, pp 325–340

  • Kokalj AJ, Kunej U, Skalar T (2018) Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere 208:522–529. https://doi.org/10.1016/j.chemosphere.2018.05.172

    Article  CAS  Google Scholar 

  • Kos M, Kahru A, Drobne D, Singh S, Kalčíková G, Kühnel D, Rohit R, Gotvajn AŽ, Jemec A (2016) A case study to optimise and validate the brine shrimp Artemia franciscana immobilisation assay with silver nanoparticles: The role of harmonisation. Environ Pollut 213:173–183. https://doi.org/10.1016/j.envpol.2016.02.015

  • Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5. https://doi.org/10.1057/s41599-018-0212-7

  • Lee K-W, Shim WJ, Kwon OY, Kang J-H (2013) Size-Dependent Effects of Micro Polystyrene Particles in the Marine Copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283. https://doi.org/10.1021/es401932b

  • Lenz R, Enders K, Nielsen TG (2016) Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci U S A 113:E4121–E4122. https://doi.org/10.1073/pnas.1606615113

  • Li H, Chen H, Wang J, Li J, Liu S, Tu J, Chen Y, Zong Y, Zhang P, Wang Z, Liu X (2021) Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp. Front Microbiol 12:1–13. https://doi.org/10.3389/fmicb.2021.717272

    Article  Google Scholar 

  • Li P, Wang X, Su M, Zou X, Duan L, Zhang H (2020) Characteristics of Plastic Pollution in the Environment: A Review. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-020-02820-1

  • Li X, Chen Y, Zhang S, Dong Y, Pang Q, Lynch I, Xie C, Guo Z, Zhang P (2023) From marine to freshwater environment: A review of the ecotoxicological effects of microplastics. Ecotoxicol Environ Saf 251:1–15. https://doi.org/10.1016/j.ecoenv.2023.114564

  • Libralato G (2014) The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 101:38–43. https://doi.org/10.1016/j.marenvres.2014.08.002

    Article  CAS  Google Scholar 

  • Libralato G, Prato E, Migliore L, Cicero AM, Manfra L (2016) A review of toxicity testing protocols and endpoints with Artemia spp. Ecol Indic 69:35–49. https://doi.org/10.1016/j.ecolind.2016.04.017

    Article  CAS  Google Scholar 

  • Lish R, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): A case of silver nanoparticles toxicity. Environ Pollut 255. https://doi.org/10.1016/j.envpol.2019.113358

  • Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020) Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ Pollut 261:1–16. https://doi.org/10.1016/j.envpol.2020.114089

  • Madhav MR, David SEM, Kumar RSS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238. https://doi.org/10.1016/J.ETAP.2017.03.013

  • Machado AJT, Mataribu B, Serrão C, da Silva Silvestre L, Farias DF, Bergami E, Corsi I, Marques-Santos LF (2021) Single and combined toxicity of amino-functionalized polystyrene nanoparticles with potassium dichromate and copper sulfate on brine shrimp Artemia franciscana larvae. Environ Sci Pollut Res 28:45317–45334. https://doi.org/10.1007/s11356-021-13907-5

  • Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM (2012) Long-term lethal toxicity test with the crustacean Artemia franciscana. J  Vis Exp. https://doi.org/10.3791/3790

    Article  Google Scholar 

  • Manfra L, Savorelli F, Di Lorenzo B, Libralato G, Comin S, Conti D, Floris B, Francese M, Gallo ML, Gartner I, Guida M, Leoni T, Marino G, Martelli F, Palazzi D, Prato E, Righini P, Rossi E, Volpi Ghirardini A, Migliore L (2015) Intercalibration of ecotoxicity testing protocols with Artemia franciscana. Ecol Indic 57:41–47. https://doi.org/10.1016/j.ecolind.2015.04.021

    Article  CAS  Google Scholar 

  • Manfra L, Canepa S, Piazza V, Faimali M (2016) Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound. Ecotoxicol Environ Saf 123:60–64. https://doi.org/10.1016/j.ecoenv.2015.08.017

    Article  CAS  Google Scholar 

  • Manfra L, Rotini A, Bergami E, Grassi G, Faleri C, Corsi I (2017) Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicol Environ Saf 145:557–563. https://doi.org/10.1016/j.ecoenv.2017.07.068

  • Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324. https://doi.org/10.1021/es0010498

    Article  CAS  Google Scholar 

  • Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T (2015) Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol 49:553–561. https://doi.org/10.1021/es5053655

    Article  CAS  Google Scholar 

  • Mishra P, Vinayagam S, Duraisamy K, Patil SR, Godbole J, Mohan A, Mukherjee A, Chandrasekaran N (2019) Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment. Environmental Science and Pollution Research 26:1537–1547. https://doi.org/10.1007/s11356-018-3698-z

  • Montagner CC, Dias MA, Paiva EM, Vidal C (2021) Microplastics: environmental occurrence and analytical challenges. Quim Nova 44:1328–1352. https://doi.org/10.21577/0100-4042.20170791

  • Morais LMS, Sarti F, Chelazzi D, Cincinelli A, Giarrizzo T, Martinelli Filho JE (2020) The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ Pollut 265. https://doi.org/10.1016/j.envpol.2020.114817

  • Murano C, Agnisola C, Caramiello D, Castellano I, Casotti R, Corsi I, Palumbo A (2020) How sea urchins face microplastics: Uptake, tissue distribution and immune system response. Environ Pollution 264. https://doi.org/10.1016/j.envpol.2020.114685

  • Nugnes R, Russo C, Lavorgna M, Orlo E, Kundi M, Isidori M (2022) Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. Environ Pollut 313. https://doi.org/10.1016/J.ENVPOL.2022.120088

  • Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462. https://doi.org/10.1016/j.envpol.2005.12.037

  • OECD (2004) Test No. 202: Daphnia sp. Acute Immobilisation Test. In: OECD (ed) OECD Guidelines for the Testing of Chemicals, Section 2, 1st edn. OECD Publishing, Paris

  • Oliveira TMN, Vaz C (2018) Marine toxicology: Assays and perspectives for developing countries. In: Bioassays: Advanced Methods and Applications. Elsevier, pp 387–401

  • Peixoto D, Amorim J, Pinheiro C, Oliva-Teles L, Varó I, de Medeiros Rocha R, Vieira MN (2019) Uptake and effects of different concentrations of spherical polymer microparticles on Artemia franciscana. Ecotoxicol Environ Saf 176:211–218. https://doi.org/10.1016/j.ecoenv.2019.03.100

    Article  CAS  Google Scholar 

  • Peixoto D, Torreblanca A, Pereira S, Vieira MN, Varó I (2022) Effect of short-term exposure to fluorescent red polymer microspheres on Artemia franciscana nauplii and juveniles. Environmental Science and Pollution Research 29:6080–6092. https://doi.org/10.1007/s11356-021-15992-y

  • Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Châtel A, Mouneyrac C, Lagarde F (2016) Is there any consistency between the microplastics found in the field and those used in laboratory experiments? Environ Pollut 211:111–123. https://doi.org/10.1016/j.envpol.2015.12.035

  • Plastics − The Facts (2020) An analysis of European latest plastics production, demand and waste data. Plastics Europe: Brussels, Belgium, 2020. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/

  • Piazza V, Ferioli A, Giacco E, Melchiorre N, Valenti A, Del Prete F, Biandolino F, Dentone L, Frisenda P, Faimali M (2012) A standardization of Amphibalanus (Balanus) amphitrite (Crustacea, Cirripedia) larval bioassay for ecotoxicological studies. Ecotoxicol Environ Saf 79:134–138. https://doi.org/10.1016/j.ecoenv.2011.12.014

  • Piccardo M, Renzi M, Terlizzi A (2020) Nanoplastics in the oceans: Theory, experimental evidence and real world. Mar Pollut Bull 157:1–20. https://doi.org/10.1016/j.marpolbul.2020.111317

  • Pinsino A, Bergami E, Della Torre C, Vannuccini ML, Addis P, Secci M, Dawson KA, Matranga V, Corsi I (2017) Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos. Nanotoxicology 11:201–209. https://doi.org/10.1080/17435390.2017.1279360

  • Pisani XG, Lompré JS, Pires A, Greco LL (2022) Plastics in scene: A review of the effect of plastics in aquatic crustaceans. Environ Res 212:113484. https://doi.org/10.1016/J.ENVRES.2022.113484

    Article  CAS  Google Scholar 

  • Ramirez L, Gentile SR, Zimmermann S, Stoll S (2019) Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and Lake Geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation. Water (Switzerland) 11. https://doi.org/10.3390/w11040721

  • Rhodes CJ (2018) Plastic pollution and potential solutions. Sci Prog 101:207–260. https://doi.org/10.3184/003685018X15294876706211

    Article  Google Scholar 

  • Ruebhart DR, Cock IE, Shaw GR (2008) Brine shrimp bioassay: Importance of correct taxonomic identification of Artemia (Anostraca) species. Environ Toxicol 23:555–560. https://doi.org/10.1002/tox.20358

    Article  CAS  Google Scholar 

  • Savorelli F, Palazzi D, Gorbi G, Invidia M, Sei S, Magaletti E, Gelli F (2007) Messa a punto di una metodologia di saggio a 14 giorni su Artemia franciscana e A. partenogenetica. Biol Amb 21:27–36

  • Schmid C, Cozzarini L, Zambello E (2021) Microplastic’s story. Mar Pollut Bull 162:1–23. https://doi.org/10.1016/j.marpolbul.2020.111820

  • Sendra M, Erica S, Julián B, Moreno-Garrido I, Araujo Cristiano VM (2020) Ingestion and bioaccumulation of polystyrene nanoplastics and their effects on the microalgal feeding of Artemia franciscana. Ecotoxicol Environ Saf 188. https://doi.org/10.1016/j.ecoenv.2019.109853

  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83. https://doi.org/10.1016/j.envpol.2013.10.013

    Article  Google Scholar 

  • Sainz-Escudero L, López-Estrada EK, Rodríguez-Flores PC, García-París M (2021) Settling taxonomic and nomenclatural problems in brine shrimps, Artemia (Crustacea: Branchiopoda: Anostraca), by integrating mitogenomics, marker discordances and nomenclature rules. PeerJ 9. https://doi.org/10.7717/peerj.10865

  • Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102:95–101. https://doi.org/10.1016/j.marpolbul.2015.11.053

    Article  Google Scholar 

  • Sharma VK, Ma X, Guo B, Zhang K (2021) Environmental factors-mediated behavior of microplastics and nanoplastics in water: A review. Chemosphere 271:1–8. https://doi.org/10.1016/j.chemosphere.2021.129597

  • Shen M, Zhang Y, Zhu Y, Song B, Zeng G, Hu D, Wen X, Ren X (2019) Recent advances in toxicological research of nanoplastics in the environment: A review. Environ Pollut 252:511–521. https://doi.org/10.1016/j.envpol.2019.05.102

  • Silva J, Torrejón G, Bay-Schmith E, Larrain A (2003) Calibration of the acute toxicity bioassay with Dapnia pulex (crustacea: Cladocera) using a reference toxicant. Gayana (Concepc) 67:87–96. https://doi.org/10.4067/S0717-65382003000100011

    Google Scholar 

  • Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production. Hydrobiologia 484:11–20. https://doi.org/10.1023/A:1021340601986

  • Sorgeloos P, Remiche-Van Der Wielen C, Persoone G (1978) The Use of Artemia Nauplii for Toxicity Tests - A Critical Analysis. Ecotoxicol Environ Saf 2:249–255

    Article  CAS  Google Scholar 

  • Suman TY, Jia PP, Li WG, Junaid M, Xin GY, Wang Y, Pei DS (2020) Acute and chronic effects of polystyrene microplastics on brine shrimp: First evidence highlighting the molecular mechanism through transcriptome analysis. J Hazard Mater 400. https://doi.org/10.1016/j.jhazmat.2020.123220

  • Sun X, Li Q, Zhu M, Liang J, Zheng S, Zhao Y (2017) Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar Pollut Bull 115:217–224. https://doi.org/10.1016/j.marpolbul.2016.12.004

    Article  CAS  Google Scholar 

  • Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A (2021) Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Sci Total Environ 784:2–11. https://doi.org/10.1016/j.scitotenv.2021.147262

  • Thompson RC, Swan SH, Moore CJ, Vom Saal FS (2009) Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1973–1976. https://doi.org/10.1098/rstb.2009.0054

  • Treece G (2000) Artemia production for marine larval fish culture. South Reg Aquac Cent 702:7

  • Trestrail C, Walpitagama M, Hedges C, Truskewycz A, Miranda A, Wlodkowic D, Shimeta J, Nugegoda D (2020) Foaming at the mouth: Ingestion of floral foam microplastics by aquatic animals. Sci Total Environ 705:1–13. https://doi.org/10.1016/j.scitotenv.2019.135826

  • Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17. https://doi.org/10.1016/j.envpol.2015.01.008

    Article  Google Scholar 

  • Vanhaecke P, Persoone G, Claus C, Sorgeloos P (1980) Research on the development of a short term standard toxicity test with Artamia nauplii. The Brine Shrimp Artemia 1:263–285

    CAS  Google Scholar 

  • Varó I, Redón S, Garcia-Roger EM, Amat F, Guinot D, Serrano R, Navarro JC (2015) Aquatic pollution may favor the success of the invasive species A. franciscana. Aquatic Toxicol 161:208–220. https://doi.org/10.1016/J.AQUATOX.2015.02.008

  • Varó I, Serrano R, Navarro JC, López FJ, Amat F (1998) Acute lethal toxicity of the organophosphorus pesticide chlorpyrifos to different species and strains of Artemia. Bull Environ Contam Toxicol 61:778–785. https://doi.org/10.1007/S001289900828

  • Vanhaecke P, Persoone G, Claus C, Sorgeloos P (1981) Proposal for a Short-Term Toxicity Test with Artemia Nauplii. Ecotoxicol Environ Saf 5:382–387

    Article  CAS  Google Scholar 

  • Vanhaecke P, Tackaert W, Sorgeloos P (1987) The biogeography of Artemia: an updated review. Artemia Research and its Applications 1:129–155

    Google Scholar 

  • Varó I, Perini A, Torreblanca A, Garcia Y, Bergami E, Vannuccini ML, Corsi I (2019) Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Sci Total Environ 675:570–580. https://doi.org/10.1016/j.scitotenv.2019.04.157

  • Vaz VP, Nogueira DJ, Vicentini DS, Matias WG (2021) Can the sonication of polystyrene nanoparticles alter the acute toxicity and swimming behavior results for Daphnia magna? Environ Sci Pollut Res 28:14192–14198. https://doi.org/10.1007/s11356-021-12455-2/Published

    Article  CAS  Google Scholar 

  • Wan JK, Chu WL, Kok YY, Lee CS (2019) Distribution of microplastics and nanoplastics in aquatic ecosystems and their impacts on aquatic organisms, with emphasis on microalgae. In: Reviews of Environmental Contamination and Toxicology. Springer New York LLC, pp 133–158

    Google Scholar 

  • Wang Y, Mao Z, Zhang M, Ding G, Sun J, Du M, Liu Q, Cong Y, Jin F, Zhang W, Wang J (2019a) The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology. Chemosphere 234:123–131. https://doi.org/10.1016/j.chemosphere.2019.05.267

  • Wang Y, Zhang D, Zhang M, Mu J, Ding G, Mao Z, Cao Y, Jin F, Cong Y, Wang L, Zhang W, Wang J (2019b) Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environ Pollut 244:715–722. https://doi.org/10.1016/j.envpol.2018.10.024

  • Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J (2017) Plastic as a persistent marine pollutant. Annu Rev Environ Resour. https://doi.org/10.1146/annurev-environ

    Article  Google Scholar 

  • Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Ulrich Nienhaus G, Simmet T (2014) Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J Nanotechnol 5:2403–2412. https://doi.org/10.3762/bjnano.5.250

  • Persoone G, Wells P (1987) Artemia in aquatic toxicology: A review. Artemia Research and its Applications 1:259–275

    Google Scholar 

  • Wirtz KW (2012) Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar Ecol Prog Ser 445:1–12. https://doi.org/10.3354/meps09502

    Article  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655. https://doi.org/10.1021/es400663f

Download references

Acknowledgements

Catarina Serrão is a recipient of a master fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors thank to our colleagues Bianca Mataribu Maciel Lima, Dr. Davi Felipe Farias, and Dr. Augusto Cezar Vasconcelos de Freitas Junior for the discussions and suggestions that helped improve the paper. The authors thank the anonymous reviewers for their suggestions and comments. The title of the manuscript is a tribute to the British filmmaker Peter Greenaway.

Funding

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico; grant number 428594/2018–2).

Author information

Authors and Affiliations

Authors

Contributions

Catarina Serrão and Luis Fernando Marques-Santos: conceptualization, data collecting, data analysis, writing, reviewing, and editing.

Corresponding author

Correspondence to Luis Fernando Marques-Santos.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrão, C., Marques-Santos, L.F. The genus Artemia, the nanoplastics, the microplastics, and their toxic effects: a review. Environ Sci Pollut Res 30, 83025–83050 (2023). https://doi.org/10.1007/s11356-023-27868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27868-4

Keywords

Navigation