Skip to main content

Advertisement

Log in

Chronostratigraphy elucidates environmental changes in lacustrine sedimentation rates and metal accumulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

All changes taking place in a watershed have repercussions on lacustrine environments, being these, the sink of all activities occurring in the basin. Lake Titicaca, the world’s highest and navigable lake, is not unfamiliar with these phenomena that can alter the sedimentation dynamics and metal accumulation. This study aimed to identify temporal trends of sedimentation rates by employing a geochronological analysis (210Pb, 137Cs) and to propose metal background values in Puno Bay, as well as to identify metal concentrations (As, Ba, Ca, Cr, Cu, K, Mg, Mo, Ni, Pb, Zn) in the projected timeline to propose, for the first time, background values in Puno Bay. Two sediment cores were collected from the outer and inner bays. Sediment rate (SR) was calculated through the excess of 210Pb (210Pbxs) applying the Constant Flux Constant Sedimentation (CFCS) model. Results show that SR in the outer bay was 0.48 ± 0.08 cm a−1 and for the inner bay was 0.64 ± 0.07 cm a−1. Sediment quality guidelines (SQGs) did not indicate toxicity was likely to occur, except for As. However, enrichment factors (EFs) indicated that all metal accumulation is geogenic. Climatic factors had a marked influence on sedimentation rates for the outer bay, and in the case of the inner bay, it was a sum of climatic and human-based factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Data availability

Please feel free to contact the corresponding author if you require the data.

References

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Hamon RS (eds) Uranium series disequilibrium, application to earth, marine and environmental sciences. Claredon Press, Oxford, pp 731–778

    Google Scholar 

  • Biamont-Rojas IE, Cardoso-Silva S, Bitencourt MD et al (2022a) Ecotoxicology and geostatistical techniques employed in subtropical reservoirs sediments after decades of copper sulfate application. Environ Geochem Health 45(5):2415. https://doi.org/10.1007/s10653-022-01362-1

    Article  CAS  Google Scholar 

  • Biamont-Rojas IE, Cardoso-Silva S, Pompêo M (2022b) Heterogeneidade espacial e ecotoxicidade de metais no sedimento em três reservatorios Paulistas aplicando um enfoque geoestatístico. In: Pompêo M, Moschini-Carlos V, López-Doval JC (eds) Aspectos da ecotoxicidade em ambientes aquáticos. Instituto de Biociências Universidade de São Paulo, São Paulo, SP, pp 43–57

    Google Scholar 

  • Biamont-Rojas IE, Cardoso-Silva S, Figueira RCL et al (2023) Spatial distribution of arsenic and metals suggest a high ecotoxicological potential in Puno Bay, Lake Titicaca Peru. Sci Total Environ 871:162051. https://doi.org/10.1016/j.scitotenv.2023.162051

    Article  CAS  Google Scholar 

  • Binford MW, Brenner M, Engstrom DR (1992) Temporal sedimentation patterns in the nearshore littoral of Lago Huiñaimarca. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Kluwer Academic Publishers, pp 29–39

    Google Scholar 

  • Blass A, Anselmetti FS, Grosjean M, Sturm M (2005) The last 1300 years of environmental history recorded in the sediments of Lake Sils (Engadine, Switzerland). Eclogae Geol Helv 98:319–332. https://doi.org/10.1007/s00015-005-1166-5

    Article  Google Scholar 

  • Bonotto DM, Sabaris TPP, Bicudo DC et al (2022) Sediments accretion at Guarapiranga reservoir, metropolitan region of São Paulo, Brazil, by the 210Pb chronological method. J Radioanal Nucl Chem 331:2869–2882. https://doi.org/10.1007/s10967-022-08382-2

    Article  CAS  Google Scholar 

  • Boulangé B, Vargas C, Rodrigo LA (1981) La sédimentation actuelle dans le lac Titicaca. Rev Hydrobiol Trop 14:299–309

    Google Scholar 

  • Brousett-Minaya MA, Rondan-Sanabria GG, Chirinos-Marroquín M, Biamont-Rojas I (2021) Impacto de la Minería en Aguas Superficiales de la Región Puno - Perú. Fides Ratio - Rev. Difusión Cult. y científica la Univ. La Salle en Boliv 21:187–208

    Google Scholar 

  • Caballero M, Zawisza E, Hernández M et al (2020) The Holocene history of a tropical high-altitude lake in central Mexico. The Holocene 30:865–877. https://doi.org/10.1177/0959683620902226

    Article  Google Scholar 

  • Cardoso Nery JR, Bonotto DM (2022) The constant flux and constant sedimentation (CF:CS) 210Pb chronological method applied to determine sedimentation rates at Amazon River watershed Brazil. J South Am Earth Sci 114:103715. https://doi.org/10.1016/j.jsames.2022.103715

    Article  CAS  Google Scholar 

  • Cardoso-Silva S, Mizael OSS et al (2021) Paleolimnological evidence of environmental changes in seven subtropical reservoirs based on metals, nutrients, and sedimentation rates. CATENA 206:105432. https://doi.org/10.1016/j.catena.2021.105432

    Article  CAS  Google Scholar 

  • Cardoso-Silva S, Mizael JOSS, Frascareli D et al (2022) Geochemistry and sedimentary photopigments as proxies to reconstruct past environmental changes in a subtropical reservoir. Environ Sci Pollut Res 29:28495–28509. https://doi.org/10.1007/s11356-022-18518-2

    Article  CAS  Google Scholar 

  • CCME (1999) Protocol for the derivation of Canadian Sediment quality guidelines for the protection of aquatic life- CCME EPC-98E. Winnipeg, Canada

    Google Scholar 

  • Das S, Vasudevan S (2021) A comprehensive study on sedimentation rate and sediment age of Satopanth Tal Garhwal Himalaya, using 210Pb and 137Cs techniques. J Radioanal Nucl Chem 329:633–646. https://doi.org/10.1007/s10967-021-07740-w

    Article  CAS  Google Scholar 

  • Dejoux C, Iltis A (1992) Lake Titicaca. A synthesis of limnological knowledge. In: Monogr. Biol, vol 68. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-2406-5

  • de Sousa ML, dos Santos DYAC, Chow F, Pompêo MLM (2021) Caffeine as a contaminant of periphyton: ecological changes and impacts on primary producers. Ecotoxicology 30:599–609. https://doi.org/10.1007/s10646-021-02381-x

    Article  CAS  Google Scholar 

  • EMSAPUNO (2012) Plan maestro optimizado 2012 - 2042. Puno, Peru

  • EMSAPUNO (2021) Plan maestro optimizado 2021 - 2051. Puno, Peru

  • Espino M, Alburqueque E, Segura M, Chura R (2018) Nivel hídrico y precipitaciones del lago Titicaca en relación con las variables de macroescala del océano Pacífico. Tradic segunda época:36–43. https://doi.org/10.31381/tradicion.v0i17.1364

  • Ferreira P, Siegle E, Schettini C et al (2015) Statistical validation of the model of diffusion-convection (MDC) of 137Cs for the assessment of recent sedimentation rates in coastal systems. J Radioanal Nucl Chem 303:2059–2071. https://doi.org/10.1007/s10967-014-3622-z

    Article  CAS  Google Scholar 

  • Ferreira KD, Rani-Borges B, Santos GL, Cardoso-Silva S, Sá LR (2021) Metals in the sediments of reservoirs: is there potential toxicity? Soc Nat 33. https://doi.org/10.14393/SN-v33-2021-58794

  • Fontana L, Ferreira PA, Benassi RF et al (2022) Sedimentation rate inferred from 210Pb and 137Cs dating of three sediment cores at Itaipu reservoir (Paraná State, Brazil) the world’s second largest hydroelectricity producer. J Radioanal Nucl Chem 331(9):3571. https://doi.org/10.1007/s10967-022-08380-4

    Article  CAS  Google Scholar 

  • Goldberg ED (1963) Geochronology with 210Pb. In: Radioactive dating. Proceedings of the symposium on radioactive dating held by the international atomic energy agency in cooperation with the joint commission on applied radioactivity. International Atomic Energy Agency, Vienna, pp 121–131

  • Goyzueta G, Alfaro HR, Aparicio M (2009) Totorales del Lago Titicaca: Importancia, conservación y gestión ambiental. Meru diseño y publicidad, Puno

  • Gunkel G (2003) Limnología de un Lago Tropical de Alta Montaña, en Ecuador: características de los sedimentos y tasa de sedimentación. Rev Biol Trop 51:381–390

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  • IMARPE (2019) Boletín diario limnológico del Lago Titicaca. Callao, Perú

    Google Scholar 

  • INEI (1995) Migraciones internas en el Perú. Instituto Nacional de Estadistica e Informatica, Lima, Perú

    Google Scholar 

  • INEI (2022) Censos Nacionales 2017. In: Result. Defin. los Censos Nac. 2017 - Puno. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1563/. Accessed 31 Jul 2022

  • INGEMMET (1995) Geología del Perú. Lima-Perú

  • Kang T-W, Yang HJ, Han JH et al (2022) Identifying pollution sources of sediment in Lake Jangseong, Republic of Korea, through an extensive survey: internal disturbances of past aquaculture sedimentation. Environ Pollut 306:119403. https://doi.org/10.1016/j.envpol.2022.119403

    Article  CAS  Google Scholar 

  • Kim BSM, Angeli JLF et al (2017) Use of a chemometric tool to establish the regional background and assess trace metal enrichment at Baixada Santista – southeastern Brazil. Chemosphere 166:372–379. https://doi.org/10.1016/j.chemosphere.2016.09.132

    Article  CAS  Google Scholar 

  • Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414. https://doi.org/10.1016/0012-821X(71)90202-0

    Article  CAS  Google Scholar 

  • Lavado Casimiro WS, Ronchail J, Labat D et al (2012) Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol Sci J 57:625–642. https://doi.org/10.1080/02626667.2012.672985

    Article  Google Scholar 

  • Lavenu A (1992) Origins. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Monogr. Biol., vol 68. Kluwer Academic Publishers, pp 3–15. https://doi.org/10.1007/978-94-011-2406-5_1

  • Lavenu A (1995) Ggeodinamica plio-cuaternaria en los andes centrales : el altiplano norte de bolivia. Rev Técnica Yacimientos Pet Fisc Boliv 16:79–96

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English. Elsevier

    Google Scholar 

  • Lim T, Ring TA, Zhang H (2022) Chemical analysis of the gallium surface in a physiologic buffer. Langmuir 38:6817–6825. https://doi.org/10.1021/acs.langmuir.1c03281

    Article  CAS  Google Scholar 

  • Liu H, Liu E, Yu Z et al (2022) Spatio-temporal accumulation patterns of trace metals in sediments of a large plateau lake (Erhai) in Southwest China and their relationship with human activities over the past century. J Geochemical Explor 234:106943. https://doi.org/10.1016/j.gexplo.2022.106943

    Article  CAS  Google Scholar 

  • Loska K, Wiechuła D, Barska B et al (2003) Assessment of arsenic enrichment of cultivated soils in Southern Poland. Polish J Environ Stud 12:187–192

    CAS  Google Scholar 

  • Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165. https://doi.org/10.1016/S0160-4120(03)00157-0

    Article  CAS  Google Scholar 

  • Loza del Carpio AL, Ccancapa Salcedo Y (2020) MERCURIO EN UN ARROYO ALTOANDINO CON ALTO IMPACTO POR MINERÍA AURÍFERA ARTESANAL (LA RINCONADA, PUNO, PERÚ). Rev Int Contam Ambient 36:33–44

    Article  Google Scholar 

  • Loza del Carpio A, Gamarra Peralta C, Condori Aliaga N (2016) Caracterización morfobatimétrica y estimación de sedimentos de la bahía interior de Puno, lago Titicaca, mediante tecnología SIG. Rev Investig Altoandinas 18:237–248. https://doi.org/10.18271/ria.2016.205

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Mamani Villalba BA, Biamont Rojas IE, Calsin Quinto B (2021) Evaluación Ecotoxicológica mediante bioensayo con Daphnia Pulex en sedimentos del Río Suches, Cojata frontera Perú - Bolivia, 2019. Fides Ratio - Rev. Difusión Cult. y científica la Univ. La Salle en Boliv 22:191–215

    Google Scholar 

  • Martins T, Ferreira K, Rani-Borges B et al (2021) Land use, spatial heterogeneity of organic matter, granulometric fractions and metal complexation in reservoir sediments. Acta Limnol Bras 33. https://doi.org/10.1590/S2179-975X3521

  • Matamet FRM, Bonotto DM (2019a) Identifying sedimentation processes in the Coata River, Altiplano of the Puno department, Peru, by the 210Pb method. Environ Earth Sci 78:641. https://doi.org/10.1007/s12665-019-8662-9

    Article  CAS  Google Scholar 

  • Matamet FRM, Bonotto DM (2019b) Sedimentation rates at Ramis River, Peruvian Altiplano South America. Environ Earth Sci 78:230. https://doi.org/10.1007/s12665-019-8233-0

    Article  CAS  Google Scholar 

  • Mizael JOSS, Cardoso-Silva S, Frascareli D et al (2020) Ecosystem history of a tropical reservoir revealed by metals, nutrients and photosynthetic pigments preserved in sediments. CATENA 184:104242. https://doi.org/10.1016/j.catena.2019.104242

    Article  CAS  Google Scholar 

  • Monchamp M-È, Bruel R, Frossard V et al (2021) Paleoecological evidence for a multi-trophic regime shift in a perialpine lake (Lake Joux, Switzerland). Anthropocene 35:100301. https://doi.org/10.1016/j.ancene.2021.100301

    Article  Google Scholar 

  • Nascimento MRL, Mozeto AA (2008) Reference values for metals and metalloids concentrations in bottom sediments of Tietê River Basin, Southeast of Brazil. Soil Sediment Contam An Int J 17:269–278. https://doi.org/10.1080/15320380802006996

    Article  CAS  Google Scholar 

  • Ndiaye A, Bentaleb I, Favier C et al (2022) Reconstruction of the holocene climate and environmental changes of Niayes peat bog in northern coast of Senegal (NW Africa) based on stable isotopes and charcoals analysis. Quat Sci Rev 289:107609. https://doi.org/10.1016/j.quascirev.2022.107609

    Article  Google Scholar 

  • NOAA (2022) Description of changes to Ocean Niño Index (ONI). In: Descr. Chang. to Ocean Niño Index. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml. Accessed 31 Jul 2022

  • Northcote TG, Morales P, Levy DA, Greaven MS (1991) Contaminación en el Lago Titicaca, Perú: Capacitación, investigación y manejo. Northburn Printers & Stationers Ltd., Vancouver, Canadá

    Google Scholar 

  • Richerson PJ, Widmer C, Kittel T, Landa CA (1975) A survey of the physical and chemical limnology of Lake Titicaca. SIL Proceedings 1922-2010(19):1498–1503. https://doi.org/10.1080/03680770.1974.11896210

    Article  Google Scholar 

  • Richerson PJ, Widmer C, Kittel T (1977) The limnology of Lake Titicaca (Peru-Bolivia), A large, high altitude tropical lake. Institute of Ecology University of California

    Google Scholar 

  • Richerson PJ, Neale PJ, Alfaro Tapia R et al (1992) Patterns of planktonic primary production and algal biomass. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Monogr. Biol., vol 68. Kluwer Academic Publishers, pp 196–222. https://doi.org/10.1007/978-94-011-2406-5_6

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304. https://doi.org/10.1016/0016-7037(75)90198-2

    Article  CAS  Google Scholar 

  • Roche MA, Bourges J, Cortes J, Mattos R (1992) Climatology and hydrology of the Lake Titicaca basin. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Monogr. Biol., 68, Kluwer Academic Publishers, pp 63–88

  • Rodrigo LA, Wirrmann D (1992) General aspects of present-day sedimentation. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Monogr. Biol., 68, Kluwer Academic Publishers, pp 23–28

  • Ronchail J, Espinoza JC, Labat D et al (2014) Evolución del nivel del Lago Titicaca durante el siglo XX. In: Pouilly M, Lazzaro X, Point D, Aguirre M (eds) Línea base de conocimientos sobre los recursos hidrológicos e hidrobiólogicos en el sistema TDPS con enfoque en la cuenca del Lago Titicaca. UICN, Quito, Ecuador, pp 1–13

    Google Scholar 

  • Rout SP, Vasudevan S (2022) Sedimentation rates and sediment age of the high-altitude cold desert Ramsar Wetland, the Chandratal, inferred from radionuclide (210Pb and 137Cs) technique. Environ Monit Assess 194:305. https://doi.org/10.1007/s10661-022-09984-9

    Article  CAS  Google Scholar 

  • Salas Mercado D (2017) Evaluación De Metales Y Metaloides En Sedimentos En La Sub Cuenca Del Rio Azángaro Y Su Modelamiento Ambientalo Title. Universidad Nacional del Altiplano -Puno

  • Saravana Kumar U, Navada SV, Rao SM et al (1999) Determination of recent sedimentation rates and pattern in Lake Naini, India by 210Pb and 137Cs dating techniques. Appl Radiat Isot 51:97–105. https://doi.org/10.1016/S0969-8043(98)00148-1

    Article  Google Scholar 

  • SENAMHI (2014) El fenomeno El Niño en el Perú. Impresiones y Servicios Generales TAWA, Lima, Perú

    Google Scholar 

  • SENAMHI (2022a) Clima / Fenomeno El Niño. In: Fenómeno El Niño. https://www.senamhi.gob.pe/main.php?dp=puno&p=fenomeno-el-nino. Accessed 31 Jul 2022

  • SENAMHI (2022b) Datos hidrometeorológicos. In: Datos Hidrometeorol. en Puno. https://www.senamhi.gob.pe/main.php?dp=puno&p=estaciones. Accessed 6 Aug 2022

  • Shah RA, Achyuthan H, Krishnan H et al (2021) Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley Western Himalaya. Arab J Geosci 14:187. https://doi.org/10.1007/s12517-021-06504-w

    Article  CAS  Google Scholar 

  • Sharma CM, Sharma S, Bajracharya RM et al (2012) First results on bathymetry and limnology of high-altitude lakes in the Gokyo Valley, Sagarmatha (Everest) National Park Nepal. Limnology 13:181–192. https://doi.org/10.1007/s10201-011-0366-0

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu Hawaii. Environ Geol 39:611–627. https://doi.org/10.1007/s002540050473

    Article  CAS  Google Scholar 

  • Tiercelin J-J, Gibert E, Umer M et al (2008) High-resolution sedimentary record of the last deglaciation from a high-altitude lake in Ethiopia. Quat Sci Rev 27:449–467. https://doi.org/10.1016/j.quascirev.2007.11.002

    Article  Google Scholar 

  • U.S.EPA (1996) Method 3050B: acid digestion of sediments, sludges, and soils, Revision 2. Washington, DC.

  • Wirrmann D (1992) Morphology and bathymetry. In: Dejoux C, Iltis A (eds) Lake Titicaca. A synthesis of limnological knowledge. Monogr. Biol., 68, Kluwer Academic Publishers, pp 3–15

  • Zhang W, Guo C, Lv J et al (2021) Organophosphate esters in sediment from Taihu Lake, China: bridging the gap between riverine sources and lake sinks. Front Environ Sci Eng 16:30. https://doi.org/10.1007/s11783-021-1464-9

    Article  CAS  Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183:198–200. https://doi.org/10.1126/science.183.4121.198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Programa de Estudantes-Convênio de Pós-Graduação (PEC-PG), CAPES/CNPq—Brasil (process 190216/2017-4), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (process 2016/24528-2, 2019/10845-4, 2020/11759-1, and 2021/10637-2).

Author information

Authors and Affiliations

Authors

Contributions

Ivan B-R performed conceptualization, investigation, formal analysis, software, data curation, and writing—original draft. Sheila C-S performed data curation, investigation, validation, and writing—review and editing. Paulo F performed data curation, validation, and writing—review and editing. Rene A-T performed data curation. Rubens F performed data curation. Marcelo P was involved in formal analysis, investigation, writing (review and editing), supervision, and funding acquisition. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Ivan Edward Biamont-Rojas.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luke Mosley

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biamont-Rojas, I.E., Cardoso-Silva, S., Alves de Lima Ferreira, P. et al. Chronostratigraphy elucidates environmental changes in lacustrine sedimentation rates and metal accumulation. Environ Sci Pollut Res 30, 72430–72445 (2023). https://doi.org/10.1007/s11356-023-27521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27521-0

Keywords

Navigation