Skip to main content

Advertisement

Log in

New insight into the toxic effects of lithium in the ragworm Perinereis cultrifera as revealed by lipidomic biomarkers, redox status, and histopathological features

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lithium (Li) is a toxic monovalent alkaline metal used in household items common to industrial applications. The present work was aimed at investigating the potential toxic effects of LiCl on the redox status, fatty acid composition, and histological aspects of the marine ragworm Perinereis cultrifera. Sea worms were exposed to LiCl graded doses (20, 40, and 80 mg/L) for 48 h. Compared with the control group, the saturated fatty acids (SFA) decreased while monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) increased upon exposure to LiCl. The increase in PUFA n-3 and PUFA n-6 was concomitant to an increase in docosahexaenoic (DHA: C22:6n-3), eicosapentaenoic (EPA: C20:5n-3), and docosapentaenoic acid (C22:5n-6) fatty acids. Results showed that LiCl-treated specimens accumulate lithium with increasing exposure gradient. Indeed, the exposure to LiCl doses promoted oxidative stress with an increase of the ferric reducing antioxidant power (FRAP), malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein product (AOPP), and protein carbonyl (PCO) as well as the enzymatic and non-enzymatic antioxidants (non-protein thiols (NPSH), catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione S-transferase (GST), and metallothionein (MT)) levels in all treated groups. Our biochemical findings have been affirmed by the histopathological observations showing hyperplasia and loss of the intestine structure in treated specimens. Overall, our findings give new insights on the toxic effect of LiCl on the redox status of P. cultrifera body tissue and highlighted the usefulness of the FA composition as an early sensitive bioindicators to better understand LiCl mechanism of toxicity in marine polychaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and materials are available from the corresponding author on reasonable request.

References

  • Aebi H (1984) Catalase in vitro. Meth. Enzym 105:121–126. https://doi.org/10.1016/S00766879(84)05016-3

    Article  CAS  Google Scholar 

  • Albano GD, Gagliardo RP, Montalbano AM, Profita M (2022) Overview of the mechanisms of oxidative stress: impact in inflammation of the airway diseases. Antioxidants 11:2237. https://doi.org/10.3390/antiox11112237

    Article  CAS  Google Scholar 

  • Alderman CJJ, Shah S, Foreman JC, Chain BM, Katz DR (2002) The role of advanced oxidation protein products in regulation of dendritic cell function. Free Radic Biol Med 32:377–385. https://doi.org/10.1016/s0891-5849(01)00735-3

    Article  CAS  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4- hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–277. https://doi.org/10.1016/00032697(71)90370-8

    Article  CAS  Google Scholar 

  • Bejaoui S, Bouaziz M, Ghribi F, Chetoui I, EL Cafsi M (2020) Assessment of the biochemical and nutritional values of Venerupis decussata from Tunisian lagoons submitted to different anthropogenic ranks. Environ Sci Pollut Res 27:1734–175110. https://doi.org/10.1007/s11356-019-06851-y

    Article  CAS  Google Scholar 

  • Bejaoui S, Chaâbane M, Chalbi E, Chalghaf M, El Cafsi M, Soudani N (2020) Exploring the impacts of mercury chloride exposure on fatty acids profile, oxidative stress response and histomorphological aspect of Cerastoderma edule detoxifying organs. Ecol Indic 118:106798. https://doi.org/10.1016/j.ecolind.2020.106798

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  • Berthet B, Mouneyrac C, Amiard JC, Amiard-Triquet C, Berthelot Y, Le Hen A, Mastain O, Rainbow PS, Smith BD (2003) Accumulation and soluble binding of cadmium, copper, and zinc in the polychaete Hediste diversicolor from coastal sites with different trace metal bioavailabilities. Arch Environ Contam Toxicol 45:468–478. https://doi.org/10.1007/s00244-003-0135-0

    Article  CAS  Google Scholar 

  • Birch NJ (2012) Lithium and the cell: pharmacology and biochemistry. Academic Press, New York

    Google Scholar 

  • Bouhedi M, Antit M, Chaibi M, Perrein-Ettajani H, Gillet P, Azzouna A (2020) Assessment of trace element accumulation on the Tunisian coasts using biochemical biomarkers in Perinereis cultrifera. Sci Mar 85:91–102. https://doi.org/10.3989/scimar.05099.009

    Article  CAS  Google Scholar 

  • Bouraoui Z, Ghedira J, Boussetta H (2016) Biomarkers responses in different body regions of the polychaeta Hediste diversicolor (Nereidae, Polychaete) exposed to copper. J Integr Coast Zone Manag 15:371–376

    Google Scholar 

  • Calder PC (2005) Polyunsaturated fatty acids and inflammation. Biochem Soc Trans 33:423–427. https://doi.org/10.1042/BST0330423

    Article  CAS  Google Scholar 

  • Cecchi G, Biasini S, Castano J (1985) Methanolyse rapide des huiles en solvants. Note de laboratoire. Rev Franc Corps Gras 4:163–164

    Google Scholar 

  • Chetoui I, Bejaoui S, Trabelsi W, Rabeh I, Nechi S, Chelbi E, Chalghaf M, El Cafsi M, Soudani N (2019) Exposure of mactra corallina to acute doses of lead: effects on redox status, fatty acid composition and histomorphological aspect. Drugs Chem. https://doi.org/10.1080/01480545.2019.1693590

    Article  Google Scholar 

  • Da Costa F, Robert R, Quéré C, Wikfors GH, Soudant P (2015) Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids 50:503–511. https://doi.org/10.1007/s11745-015-4006-z

    Article  CAS  Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution : a review. Revista De Biología Tropica 56:11–38

    Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 86:421–431. https://doi.org/10.1016/0076-6879(90)

    Article  Google Scholar 

  • Dwyer RJ, Burch SA, Ingersoll CG, Hunn JB (1992) Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna. Environ Toxicol Chem 11:513–520

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulhydryl groups. Archiv Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  Google Scholar 

  • Fadhlaoui M, Couture P (2016) Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens) Aqua. Toxicol 180:45–55. https://doi.org/10.1016/j.aquatox.2016.09.005

    Article  CAS  Google Scholar 

  • Fauvel P (1927) Polychetes Sedentaires Faune de France, ed. Lechevalier, Paris, p 494

  • Filimonova V, Alves FG, Marques JC, Troch M, Gonçalves AMM (2016) Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecol Indic 67:657–672

    Article  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of gluthathione peroxidase. Meth Enzym 105:114–121. https://doi.org/10.1016/S0076-6879(84)05015-1

    Article  CAS  Google Scholar 

  • Fokina NN, Ruokolainen TR, Nemova NN, Bakhmet IN (2013) Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol Trace Elem Res 154:217–225. https://doi.org/10.1007/s12011-013-9727-3

    Article  CAS  Google Scholar 

  • Folch J, Lee M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  • Fouzai C, Trabelsi W, Bejaoui S, Telahigue K, Rabeh I, Nechi S, Chelbi E, El Cafsi M, Soudani N (2020) Cellular toxicity mechanisms of lambda-cyhalothrin in venus verrucosa as revealed by fatty acid composition, redox status and histopathological changes. Ecol Indica 108. https://doi.org/10.1016/j.ecolind.2019.105690

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. https://doi.org/10.1146/annurev.bi.64.070195.000525

    Article  CAS  Google Scholar 

  • Geracitano LA, Luquet C, Monserrat JM, Bianchini A (2004) Histological and morphological alterations induced by copper exposure in Laeonereis acuta (Polychaeta, Nereididae). Mar Environ Res 58:263–267. https://doi.org/10.1016/j.marenvres.2004.03.069

    Article  CAS  Google Scholar 

  • Ghirardini AV, Cavallini L, Delaney E, Tagliapietra D, Ghetti P, Bettiol C, Argese E (1999) H. diversicolor, N. succinea and P. cultrifera (Polychaeta: Nereididae) as bioaccumulators of cadmium and zinc from sediments: preliminary results in the Venetian lagoon (Italy). Toxicol Environ Chem 71:457–474

    Article  Google Scholar 

  • Ghribi F, Richir J, Bejaoui S, Boussoufa D, Marengo M, El Cafsi M, Gobert S (2020) Trace elements and oxidative stress in the Ark shell Arca noae from a Mediterranean coastal lagoon (Bizerte lagoon, Tunisia): are there health risks associated with their consumption? Environ Sci Pollut Res 27:15607–15623. https://doi.org/10.1007/s11356-020-07967-2

    Article  CAS  Google Scholar 

  • Greger R (1990) Possible sites of lithium transport in the nephron. Kidney Int 28:S26–S30

    CAS  Google Scholar 

  • Guemouda M, Meghlaoui Z, Daas T, DaasMaamcha O, Scaps P (2014) Monitoring pollution in East Algerian coasts using biochemical markers in the polychaete annelid Perinereis cultrifera. Ann Biol Res 5:31–40

    Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

  • Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86. https://doi.org/10.1038/s41586-019-1862-3

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Kalinowska M, Szymańska M (2012) A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Elem Res 149:425–430

    Article  CAS  Google Scholar 

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553. https://doi.org/10.1159/00048508

    Article  Google Scholar 

  • Irato P, Santovito G (2021) Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10:579. https://doi.org/10.3390/antiox10040579

    Article  CAS  Google Scholar 

  • Kayali R, Çakatay U, Akçay T, Altuğ T (2006) Effect of alphalipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem Funct 24:79–85. https://doi.org/10.1002/cbf.1190

    Article  CAS  Google Scholar 

  • Kılıç GA (2018) Histopathological and biochemical alterations of the earthworm (Lumbricus Terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey). Chemosphere 83:1175–1180

    Article  Google Scholar 

  • Krumova K, Cosa G (2016) Chapter 1: Overview of reactive oxygen species, in Singlet oxygen: applications in biosciences and nanosciences, Volume 1, pp. 1-21. https://doi.org/10.1039/9781782622208-00001

  • Kszos LA, Stewart AJ (2003) Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12:439–447

    Article  CAS  Google Scholar 

  • Lewis C, Galloway T (2008) Genotoxic damage in polychaetes: a study of species and cell-type sensitivities. Mutat Res Genet Toxicol Environ Mutagen 654:69–75. https://doi.org/10.1016/j.mrgentox.2008.05.008

  • Liao B, Lu J, Hunang X, Guan L, Bai H, Zhang T (2018) Cloning and expression analysis of stearoyl-ACP desaturase gene PoSAD from Paeonia ostii. Acta Botan Boreali-Occiden Sin 38:35–40

    Google Scholar 

  • Liu D, Gao L, Zhang Z, Tao S, Pang Q, Li A, Deng H, Yu H (2018) Lithium promotes the production of reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). Chemosphere 195:854–863. https://doi.org/10.1016/j.chemosphere.2017.12.130

    Article  CAS  Google Scholar 

  • Llesuy S, Evelson P, Campos AM, Liss E (2001) Methodologies for evaluation of total antioxidant activities in complex mixtures A critical review. Biol Res 34:51–73. https://doi.org/10.4067/s0716-97602001000200009

    Article  CAS  Google Scholar 

  • Long K, JrR B, Woodburn K (1998) Lithium chloride: a flow-through embryo-larval toxicity test with the fathead minnow, Pimephales promelas Rafinesque. Bull Environ Contam Toxicol 60:312–317

    Article  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157. https://doi.org/10.1016/j.bbamem.2004.08.002

    Article  CAS  Google Scholar 

  • Lv F, Nie Q, Wang T, Wang A, Yang W, Liu F, Yu Y, Lv L (2016) The effects of five dietary lipid sources on growth, body composition and antioxidant parameters of the clamworm, Perinereis aibuhitensis. Aquacult Res 48:5472–5480

    Article  Google Scholar 

  • Lowry OH, Roseborouch NI, Farrand AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 263–275

  • Mao H, Wang DH, Yang WX (2012) The involvement of metallothionein in the development of aquatic invertebrate. Aquat Toxic 110:208–213. https://doi.org/10.1016/j.aquatox.2012.01.018

    Article  CAS  Google Scholar 

  • Monroig Ó, Kabeya N (2018) Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review. Fish Sci 84:911–928. https://doi.org/10.1007/s12562-018-1254-x

    Article  CAS  Google Scholar 

  • Moore MN, Simpson MG (1992) Molecular and cellular pathology in environmental impact assessment. Aquat Toxicol 22:313–322

    Article  CAS  Google Scholar 

  • Neave MJ, Streten-Joyce C, Nouwens AS, Glasby CJ, McGuinness KA, Parry DL, Gibb KS (2012) The transcriptome and proteome are altered in marine polychaetes (Annelida) exposed to elevated metal levels. Proteomics 75:2721–2735. https://doi.org/10.1016/j.jprot.2012.03.031

    Article  CAS  Google Scholar 

  • Ou P, Wolff SP (1996) A discontinuous method for catalase determination at near 774 physiological concentrations of H2O2 and its application to the study of H2O2 fluxes within 775 cells. J Biochem Biophys Methods 31:59–67

    Article  CAS  Google Scholar 

  • Petrovic S, Ozretic B, Krajnovic-Ozretic M, Bobinac D (2001) Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in afield study. Mar Pollut Bullet 42:1373–1378. https://doi.org/10.1016/S0025-326X(01)00167-9

    Article  CAS  Google Scholar 

  • Pini JM (2014) An assessment of the impacts of chronic exposure of copper and zinc on the polychaete Nereis Alitta virens using an integrated ecotoxicological approach. University of Portsmouth, Thesis, p 293p

    Google Scholar 

  • Radwan MA, El-Gendy KS, Gad AF (2010) Oxidative stress biomarkers in the digestive gland of Theba pisana exposed to heavy metals. Arch Environ Contam Toxicol 58:828–835. https://doi.org/10.1007/s00244-009-9380-1

    Article  CAS  Google Scholar 

  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Forcardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423

    Article  CAS  Google Scholar 

  • Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric methods for carbonyl assay. Meth Enzymol 233:357–363. https://doi.org/10.1016/S0076-6879(94)33041-7

    Article  CAS  Google Scholar 

  • Richir J, Gobert S (2014) The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis. Ecol Indic 36:33–47

    Article  CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, de Molina MDCR (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358

    Article  CAS  Google Scholar 

  • Rouhi A, Gillet P, Deutsch B (2008) Reproduction and population dynamics of Perinereis cultrifera (Polychaeta: Nereididae) of the Atlantic coast, El Jadida, Morocco. Cah Biol Mar 49:151–160

  • Ruocco N, Costantini M, Santella L (2016) New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci Rep 6:32157. https://doi.org/10.1038/srep32157

    Article  CAS  Google Scholar 

  • Salimi A, Gholamifar E, Naserzadeh P, Hosseini MJ, Pourahmad J (2016) Toxicity of lithium on isolated heart mitochondria and cardiomyocyte: a justification for its cardiotoxic adverse effect. J Biochem Mol Toxicol 0:1–8

  • Sapse AM, Schleyer PR (1995) Lithium chemistry: a theoretical and experimental overview. Wiley, New York

    Google Scholar 

  • Schrauzer GN (2002) Lithium: Occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21:14–21

    Article  CAS  Google Scholar 

  • Shahzad B, Niaz Mughal M, Tanveer M, Gupta D, Abbas G (2017) Is lithium biologically an important or toxic element to living organisms? An overview. Environ Sci Pollut Res Int 24:103–115. https://doi.org/10.1007/s11356-016-7898-0

    Article  CAS  Google Scholar 

  • Sharma VJ, Satyanarayan S (2011) Effect of selected heavy metals on the histopathology of different tissues of earthworm Eudrillus eugeniae. Environ Monit Assess 180:257–267. https://doi.org/10.1007/s10661-010-1786-8

    Article  CAS  Google Scholar 

  • Silva CO, Simões T, Novais SC, Pimparel I, Granada L, Soares AMVM, Barata C, Lemos MFL (2017) Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. Sci Total Environ 15:542–550. https://doi.org/10.1016/j.scitotenv.2017.02.015

    Article  CAS  Google Scholar 

  • Singh N, Bhagat J, Ingole BS (2017) Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera. Environ Monit Assess 189:308. https://doi.org/10.1007/s10661-017-5993-4

    Article  CAS  Google Scholar 

  • Snani M, Meghlaoui Z, Maamcha O, Daas T, Scaps P (2015) Laying period and biomarkers of the polychaete Perinereis cultrifera from the eastern coast of Algeria- Annaba-subjected to marine pollution. J Entomol Zool Stud 3:249–254

    Google Scholar 

  • Soudani N, Troudi A, Ben Amara I, Bouaziz H, Boudawara T, Zeghal N (2012) Ameliorating effect of selenium on chromium (VI)-induced oxidative damage in the brain of adult rats. J Physiol Biochem 68:397–409. https://doi.org/10.1007/s13105-012-0152-4

    Article  CAS  Google Scholar 

  • Stachel SE, Grunwald DJ, Myers PZ (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development (cambridge, England) 117:1261–1274

    Article  CAS  Google Scholar 

  • Stampatori D, Raimondi PP, Noussan M (2020) Li-ion batteries: a review of a key technology for transport decarbonization. Energies 13:2638. https://doi.org/10.3390/en13102638

    Article  CAS  Google Scholar 

  • Telahigue K, Rabeh I, Hajji T, Trabelsi W, Bejaoui S, Chouba L, EL Cafsi M, Soudani N (2019) Effects of acute mercury exposure on fatty acid composition and oxidative stress biomarkers in Holothuria forskali body wall. Ecotoxicol Environ Safety 169:516–522. https://doi.org/10.1016/j.ecoenv.2018.11.051

    Article  CAS  Google Scholar 

  • Thibon F, Weppe L, Vigier N, Churlaud C, Lacoue-Labarthe T, Metian M, Yves Cherel P, Bustamante, (2021) Large-scale survey of lithium concentrations in marine organisms. Sci Total Envir 751:141453. https://doi.org/10.1016/j.scitotenv.2020.141453

    Article  CAS  Google Scholar 

  • Trabelsi W, Chetoui I, Fouzai C, Bejaoui S, Rabeh I, Telahigue K, Chalghaf M, El Cafsi M, Soudani N (2019) Redox status and fatty acid composition of Mactra corallina digestive gland following exposure to acrylamide. Environ Sci Pollut Res 26:22197–22208. https://doi.org/10.1007/s11356-019-05492-5

    Article  CAS  Google Scholar 

  • Trabelsi W, Fouzai C, Telahigue K, Chetoui I, Nechi S, Chelbi E, Zrellli S, Soudani N (2022) The potential adverse effects of acrylamide on the oxidative stress response, fatty acids profile, and histopathological aspect of the Mediterranean Holothuria forskali respiratory tree. Environ Toxicol 2022:1–13. https://doi.org/10.1002/tox.23674

    Article  CAS  Google Scholar 

  • Venkateswara Rao J, Surya Pavan Y, Madhavendra SS (2003) Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicol Environ Saf 54:296–301

    Article  CAS  Google Scholar 

  • Viana T, Ferreira N, Henriques B, Leite C, De Marchi L, Amaral J, Freitas R, Pereira E (2020) How safe are the new green energy resources for marine wildlife? The case of lithium. Environ Pollut 267:115458. https://doi.org/10.1016/j.envpol.2020.115458

    Article  CAS  Google Scholar 

  • Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarticmolluscs. Mar Environ Res 44:69–84. https://doi.org/10.1016/S0141-1136(96)00103-1

    Article  CAS  Google Scholar 

  • Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J (1999) Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol 277:1612–1619. https://doi.org/10.1152/ajpregu.1999.277.6.R1612

    Article  Google Scholar 

  • Weiner ML (1991) Overview of lithium toxicology. In: Schrauzer GN, Klippel KF (eds) Lithium in biology and medicine. VCH Verlag, Weinheim, pp 83–99

    Google Scholar 

  • Yin Y, Sui C, Meng F, MaP JY (2017) The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K/Akt pathway. Lipids Health Dis 16:87. https://doi.org/10.1186/s12944-017-0474-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Hassen Mejri, technician of the Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, for his assistance with gas chromatography analysis.

Author information

Authors and Affiliations

Authors

Contributions

F.G: investigation, conceptualization, methodology, formal analysis, writing original draft, writing, review, and editing. S.B: investigation, conceptualization, methodology, formal analysis, and editing. R.Z: investigation, methodology, and formal analysis. W.T: investigation and formal analysis. M.M: formal analysis and software. I.C: investigation. A.C: supervision, resources, reviewing, and editing. N.S: conceptualization, methodology, supervision, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feriel Ghribi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Chris Lowe

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghribi, F., Bejaoui, S., Zupa, R. et al. New insight into the toxic effects of lithium in the ragworm Perinereis cultrifera as revealed by lipidomic biomarkers, redox status, and histopathological features. Environ Sci Pollut Res 30, 68821–68835 (2023). https://doi.org/10.1007/s11356-023-27223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27223-7

Keywords

Navigation