Skip to main content

Advertisement

Log in

Economic and socioecological perspectives of urban wetland loss and processes: a study from literatures

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Existing literatures across the world highlighted the causes and rate of wetland loss; however, so far, no researches tried to analyze how these are guided by the socioeconomic and ecological conditions. The current review work wished to explore how economic and socioecological perspectives could control the rate and drivers of urban wetland loss. Through meta-analysis, this study also intended to explore the changing polarity in research publication and collaborative research. Total 287 original research articles indicating the rates and drivers of wetland loss from 1990 to June 2022 for the first objective and 1500 articles focusing wetland researches from Dimensions AI database for the last objective were taken.

Results clearly revealed that the rate of urban wetland loss varies from 0.03 to 3.13% annually, and three main drivers like built-up, agricultural expansions, pollution were identified all across the world. Loss rate was found maximum in the developing and least developed countries. Pollution, built-up expansion, and agriculture expansion, respectively, in developed, developing, and least developed nations were identified as the most dominant drivers of urban wetland loss. Linking loss rate and drivers with socioecological and economic perspectives revealed that human development index (HDI), ecological performance index (EPI), sustainable development goal index (SDGI), and social progress index (SPI) is negatively associated with the rate of urban wetland loss. Contrarily, a poverty rate encouraged higher rate of loss. This study articulated that improving these socioecological and economic conditions could help wetland conservation and restoration to achieve SDGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data and materials related to the manuscript are published with the paper, and available from the corresponding author upon request (swadespal2017@gmail.com).

References

  • Afzal M, Rehman K, Shabir G, Tahseen R, Ijaz A, Brix H (2019) Large-scale remediation of oil-contaminated water using floating treatment wetlands. NPJ Clean Water 2(1):3

    Article  CAS  Google Scholar 

  • Alam MZ, Carpenter-Boggs L, Rahman A, Haque MM, Miah MRU, Moniruzzaman M, Abdullah HM (2017) Water quality and resident perceptions of declining ecosystem services at Shitalakka wetland in Narayanganj city. Sustainability of Water Quality and Ecology 9:53–66

    Article  Google Scholar 

  • Alikhani S, Nummi P, Ojala A (2021) Urban wetlands: a review on ecological and cultural values. Water 13(22):3301

    Article  Google Scholar 

  • Asomani-Boateng R (2019) Urban wetland planning and management in Ghana: a disappointing implementation. Wetlands 39(2):251–261

    Article  Google Scholar 

  • Assefa WW, Eneyew BG, Wondie A (2021) The impacts of land-use and land-cover change on wetland ecosystem service values in peri-urban and urban area of Bahir Dar City, Upper Blue Nile Basin. Northwestern Ethiopia Ecological Processes 10(1):1–18

    Google Scholar 

  • Asselen SV, Verburg PH, Vermaat JE, Janse JH (2013) Drivers of wetland conversion: a global meta-analysis. PloS One 8(11):e81292

    Article  Google Scholar 

  • Assessment ME (2005) Ecosystems and human well-being: wetlands and water. World Resources Institute

    Google Scholar 

  • Athukorala D, Estoque RC, Murayama Y, Matsushita B (2021) Impacts of urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens (Basel) 13(2):316

    Article  Google Scholar 

  • Ballut-Dajud GA, Sandoval Herazo LC, Fernández-Lambert G, Marín-Muñiz JL, López Méndez MC, Betanzo-Torres EA (2022) Factors affecting wetland loss: a review. Land 11(3):434

    Article  Google Scholar 

  • Barbier EB, Hochard JP (2018) Land degradation and poverty Nature Sustainability 1(11):623–631

    Article  Google Scholar 

  • Bassi N, Kumar MD, Sharma A, Pardha-Saradhi P (2014) Status of wetlands in India: a review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology. Regional Studies 2:1–19. https://doi.org/10.1016/j.ejrh.2014.07.001

    Article  Google Scholar 

  • Basu T, Das A (2021) Systematic review of how eco-environmental transformation due to urbanization can be investigated in the sustainable development of Indian cities. Environmental Challenges 4:100099

    Article  CAS  Google Scholar 

  • Basu T, Das A, Pham QB, Al-Ansari N, Linh NTT, Lagerwall G (2021) Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India. Sci Rep 11(1):1–22

    Google Scholar 

  • Behun M, Gavurova B, Tkacova A, Kotaskova A (2018) The impact of the manufacturing industry on the economic cycle of European Union countries. Journal of competitiveness 10(1):23

    Article  Google Scholar 

  • Bellezoni RA, Meng F, He P, Seto KC (2021) Understanding and conceptualizing how urban green and blue infrastructure affects the food, water, and energy nexus: a synthesis of the literature. J Clean Prod 289:125825

    Article  Google Scholar 

  • Blacker CP (1947) Stages in population growth. Eugen Rev 39(3):88

    CAS  Google Scholar 

  • Bolca M, Özen F, Güneş A (2014) Land use changes in Gediz Delta (Turkey) and their negative impacts on wetland habitats. J Coast Res 30(4):756–764

    Google Scholar 

  • Bolca M, Turkyilmaz B, Kurucu Y, Altinbas U, Esetlili MT, Gulgun B (2007) Determination of impact of urbanization on agricultural land and wetland land use in Balçovas’ Delta by remote sensing and GIS technique. Environ Monit Assess 131(1):409–419

    Article  Google Scholar 

  • Boyer T, Polasky S (2004) Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24(4):744–755

    Article  Google Scholar 

  • Cai Y, Zhang H, Zheng P, Pan W (2016) Quantifying the impact of land use/land cover changes on the urban heat island: a case study of the natural wetlands distribution area of Fuzhou City. China Wetlands 36(2):285–298

    Article  Google Scholar 

  • Caldwell JC (1976) Toward a restatement of demographic transition theory. Population and development review:321–366

  • Carter M (2015) Wetlands and health: how do urban wetlands contribute to community wellbeing? Wetlands and human health. Springer, Dordrecht, pp 149–167

    Chapter  Google Scholar 

  • Chakraborty R, Talukdar S, Basu T, Pal S (2018) Habitat identity crisis caused by the riparian wetland squeeze in Tangon River Basin, Barind Region, India. Spat Inf Res 26:507–516

    Article  Google Scholar 

  • Chandramouli C, General R (2011). In: Census of India 2011 (ed) Provisional Population Totals. Government of India, New Delhi, pp 409–413

    Google Scholar 

  • Chaudhary S, McGregor A, Houston D, Chettri N (2019) Spiritual enrichment or ecological protection?: a multi-scale analysis of cultural ecosystem services at the Mai Pokhari, a Ramsar site of Nepal. Ecosyst Serv 39:100972

    Article  Google Scholar 

  • Chen L, Jin Z, Michishita R, Cai J, Yue T, Chen B, Xu B (2014) Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. Eco Inform 24:17–26

    Article  Google Scholar 

  • Coale AJ (1989) Demographic transition. In: Social economics. Palgrave Macmillan, London, pp 16–23

    Chapter  Google Scholar 

  • Corbau C, Zambello E, Rodella I, Utizi K, Nardin W, Simeoni U (2019) Quantifying the impacts of the human activities on the evolution of Po delta territory during the last 120 years. J Environ Manage 232:702–712

    Article  CAS  Google Scholar 

  • Cowardin LM, Golet FC (1979) US Fish and Wildlife Service 1979 wetland classification: a review. In: Classification and inventory of the world’s wetlands. Springer, pp 139–152

    Google Scholar 

  • Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of production economics 204:383–394

    Article  Google Scholar 

  • Dar SA, Rashid I, Bhat SU (2021) Land system transformations govern the trophic status of an urban wetland ecosystem: perspectives from remote sensing and water quality analysis. Land Degradation & Development 32(14):4087–4104

    Article  Google Scholar 

  • Das A, Basu T (2020) Assessment of peri-urban wetland ecological degradation through importance-performance analysis (IPA): a study on Chatra Wetland. India Ecological Indicators 114:106274

    Article  Google Scholar 

  • Das R, Pal S (2016) Spatial association of wetlands over physical variants in Barind Tract of West Bengal, India.. Journal of Wetlands. Environ Manag 4(2). https://doi.org/10.20527/jwem.v4i2.99

  • Davis K (2011) The urbanization of the human population. City Read 5:20–30

    Google Scholar 

  • Dewan AM, Yamaguchi Y (2009) Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied geography 29(3):390–401

    Article  Google Scholar 

  • Dou T, Troesch S, Petitjean A, Gábor PT, Esser D (2017) Wastewater and rainwater management in urban areas: a role for constructed wetlands. Procedia Environmental Sciences 37:535–541

    Article  Google Scholar 

  • Dror I (2015) Innovation platforms for agricultural development. J. J. Cadilhon, M. Schut, M. Misiko, & S. Maheshwari (Eds.). Taylor & Francis

  • Ehrenfeld JG (2000) Evaluating wetlands within an urban context. Urban Ecosyst 4(1):69–85

    Article  Google Scholar 

  • Evers DE, Gosselink JG, Sasser CE, Hill JM (1992) Wetland loss dynamics in southwestern Barataria basin, Louisiana (USA), 1945–1985. Wetlands Ecology and Management 2(3):103–118

    Article  Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nature Climate Change 4(11):945–948

    Article  Google Scholar 

  • Fang H, Xu Y, Ye Z, Zhang Z, Pan S, Deng L et al (2015) Impact of urbanization on nutrients and heavy metal pollution of Napahai Wetland, Shangri-La County, China. International Journal of Sustainable Development & World Ecology 22(2):117–126

    Article  Google Scholar 

  • Fickas KC, Cohen WB, Yang Z (2016) Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetlands ecology and management 24(1):73–92

    Article  Google Scholar 

  • Fielding AJ (1989) Migration and urbanization in Western Europe since 1950. The Geographical Journal 155(1):60–69

    Article  Google Scholar 

  • Forkuor G, Cofie O (2011) Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—a remote sensing approach. International Journal of Remote Sensing 32(4):1017–1037

    Article  Google Scholar 

  • Frantzeskaki N (2019) Seven lessons for planning nature-based solutions in cities. Environ Sci Policy 93:101–111

    Article  Google Scholar 

  • Friedmann J (2006) Four theses in the study of China’s urbanization. Int J Urban Reg Res 30(2):440–451

    Article  Google Scholar 

  • Ghosh S, Dinda S, Chatterjee ND, Das K (2018) Analyzing risk factors for shrinkage and transformation of East Kolkata Wetland. India Spatial Information Research 26(6):661–677

    Article  Google Scholar 

  • Grover A, Singh RB (2015) Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): a comparative study of Delhi and Mumbai. Environments 2(2):125–138

    Article  Google Scholar 

  • Hammer DA, Bastian RK (2020) Wetlands ecosystems: natural water purifiers? In: Constructed wetlands for wastewater treatment. CRC Press, pp 5–19

    Chapter  Google Scholar 

  • Handayani HH, Murayama Y, Ranagalage M, Liu F, Dissanayake DMSLB (2018) Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: a case study of Surabaya. Indonesia Remote Sensing 10(10):1599

    Article  Google Scholar 

  • Haregeweyn N, Fikadu G, Tsunekawa A, Tsubo M, Meshesha DT (2012) The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: a case study of Bahir Dar. Ethiopia Landscape and urban planning 106(2):149–157

    Article  Google Scholar 

  • Harikumar, P. S., & Jisha, T. S. (2010). Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India.

    Google Scholar 

  • Herrera D, Ellis A, Fisher B, Golden CD, Johnson K, Mulligan M et al (2017) Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat Commun 8(1):1–8

    Article  CAS  Google Scholar 

  • Hettiarachchi M, Morrison TH, Wickramsinghe D, Mapa R, De Alwis A, McAlpine CA (2014) The eco-social transformation of urban wetlands: a case study of Colombo, Sri Lanka. Landscape and Urban Planning 132:55–68

    Article  Google Scholar 

  • Huang SL, Wang SH, Budd WW (2009) Sprawl in Taipei’s peri-urban zone: responses to spatial planning and implications for adapting global environmental change. Landscape and urban planning 90(1-2):20–32

    Article  Google Scholar 

  • Hussien K, Demissie B, Meaza H (2018) Spatiotemporal wetland changes and their threats in North Central Ethiopian Highlands. Singapore Journal of Tropical Geography 39(3):332–350

    Article  Google Scholar 

  • Imperative SP (2021) Social progress index 2021

  • Jacques, K., Congalton, R. G., & Babbitt, K.(2017). Effects of Urbanization on the Spatial Distribution and Size of Wetlands in New Hampshire.

    Google Scholar 

  • Ji W, Xu X, Murambadoro D (2015) Understanding urban wetland dynamics: cross-scale detection and analysis of remote sensing. International Journal of Remote Sensing 36(7):1763–1788

    Article  Google Scholar 

  • Jia H, Ma H, Wei M (2011) Urban wetland planning: a case study in the Beijing central region. Ecological Complexity 8(2):213–221

    Article  Google Scholar 

  • Jiang W, Wang W, Chen Y, Liu J, Tang H, Hou P, Yang Y (2012) Quantifying driving forces of urban wetlands change in Beijing City. Journal of Geographical Sciences 22(2):301–314

    Article  Google Scholar 

  • Jiangyi L, Shiquan D, Hmeimar AEH (2020) Cost-effectiveness analysis of different types of payments for ecosystem services: a case in the urban wetland ecosystem. J Clean Prod 249:119325

    Article  Google Scholar 

  • Jisha KC, Puthur JT (2021) Ecological importance of wetland systems. Current Challenges and Future Strategies, Wetlands Conservation, pp 40–54

    Google Scholar 

  • Junk WJ (2013) Current state of knowledge regarding South America wetlands and their future under global climate change. Aquatic Sciences 75(1):113–131

    Article  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic sciences 75:151–167

    Article  CAS  Google Scholar 

  • Kabiri S, Allen M, Okuonzia JT, Akello B, Ssabaganzi R, Mubiru D (2020) Detecting level of wetland encroachment for urban agriculture in Uganda using hyper-temporal remote sensing. AAS Open Research 3:18

    Article  Google Scholar 

  • Kahil MT, Albiac J, Dinar A, Calvo E, Esteban E, Avella L, Garcia-Molla M (2016) Improving the performance of water policies: evidence from drought in Spain. Water 8(2):34

    Article  Google Scholar 

  • KAYITESI, C. (2019). Spatio-temporal analysis of urban growth and its impacts on Rwampara wetland in the City of Kigali Rwanda.

    Google Scholar 

  • Keho Y (2016) What drives energy consumption in developing countries? The experience of selected African countries. Energy Policy 91:233–246

    Article  Google Scholar 

  • Kentula ME, Gwin SE, Pierson SM (2004) Tracking changes in wetlands with urbanization: sixteen years of experience in Portland, Oregon, USA. Wetlands 24(4):734–743

    Article  Google Scholar 

  • Khoshkam M, Marzuki A, Al-Mulali U (2016) Socio-demographic effects on Anzali wetland tourism development. Tour Manag 54:96–106

    Article  Google Scholar 

  • Kingsford RT, Basset A, Jackson L (2016) Wetlands: conservation’s poor cousins. Aquatic Conservation: Marine and Freshwater Ecosystems 26(5):892–916

    Article  Google Scholar 

  • Kumar A, Sati JP, Tak PC, Alfred JRB (2005) Handbook on Indian Wetland Birds and their Conservation: i-xxvi; 1- 468 (Published by the Director. Zool. Surv, India)

    Google Scholar 

  • Kumar S, Agarwal A, Villuri VGK, Pasupuleti S, Kumar D, Kaushal DR et al (2021) Constructed wetland management in urban catchments for mitigating floods. Stochastic Environmental Research and Risk Assessment 35(10):2105–2124

    Article  Google Scholar 

  • Lee SY, Dunn RJK, Young RA, Connolly RM, Dale PER, Dehayr R et al (2006) Impact of urbanization on coastal wetland structure and function. Austral Ecol 31(2):149–163

    Article  Google Scholar 

  • Let M, Pal S (2023) Socio-ecological well-being perspectives of wetland loss scenario: a review. J Environ Manage 326:116692

    Article  Google Scholar 

  • Leung HM, Duzgoren-Aydin NS, Au CK, Krupanidhi S, Fung KY, Cheung KC et al (2017) Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut Res 24:9079–9088

    Article  CAS  Google Scholar 

  • Li C, Wang H, Liao X, Xiao R, Liu K, Bai J et al (2022) Heavy metal pollution in coastal wetlands: a systematic review of studies globally over the past three decades. J Hazard Mater 424:127312

    Article  CAS  Google Scholar 

  • Li Y, Shi Y, Zhu X, Cao H, Yu T (2014) Coastal wetland loss and environmental change due to rapid urban expansion in Lianyungang, Jiangsu. China Regional environmental change 14(3):1175–1188

    Article  Google Scholar 

  • Li Y, Zhu X, Sun X, Wang F (2010) Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: a case study of Lianyungang. China Landscape and urban Planning 94(3-4):218–227

    Article  Google Scholar 

  • Li Z, Jiang W, Wang W, Chen Z, Ling Z, Lv J (2020) Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol Indic 117:106677

    Article  Google Scholar 

  • Liang J, Yang Z, Tang L, Zeng G, Yu M, Li X et al (2017) Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181:281–288

    Article  CAS  Google Scholar 

  • Lin Q, Yu S (2018) Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast. Sci Rep 8(1):1–10

    Google Scholar 

  • Lin W, Cen J, Xu D, Du S, Gao J (2018) Wetland landscape pattern changes over a period of rapid development (1985–2015) in the ZhouShan Islands of Zhejiang province, China. Estuar Coast Shelf Sci 213:148–159

    Article  Google Scholar 

  • SU MS, TI GM, Zahidul I (2009) Pre-and post-urban wetland area in Dhaka City, Bangladesh: a remote sensing and GIS analysis. Journal of Water Resource and Protection 2009

  • Mabwoga SO, Thukral AK (2014) Characterization of change in the Harike wetland, a Ramsar site in India, using landsat satellite data. SpringerPlus 3(1):1–11

    Article  Google Scholar 

  • Malekmohammadi B, Jahanishakib F (2017) Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol Indic 82:293–303

    Article  Google Scholar 

  • Mandal MH, Roy A, Siddique G (2021) Spatial dynamics in people-wetland association: an assessment of rural dependency on ecosystem services extended by Purbasthali Wetland, West Bengal. Environment, Development and Sustainability 23(7):10831–10852

    Article  Google Scholar 

  • Mandishona E, Knight J (2019) Users’ perceptions and understanding of two urban wetlands in Harare, Zimbabwe. South African Geographical Journal= Suid-Afrikaanse Geografiese Tydskrif 101(3):326–348

    Article  Google Scholar 

  • Mao D, Luo L, Wang Z, Wilson MC, Zeng Y, Wu B, Wu J (2018a) Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Sci Total Environ 634:550–560

    Article  CAS  Google Scholar 

  • Mao D, Tian Y, Wang Z, Jia M, Du J, Song C (2021) Wetland changes in the Amur River Basin: differing trends and proximate causes on the Chinese and Russian sides. J Environ Manage 280:111670

    Article  Google Scholar 

  • Mao D, Wang Z, Wu J, Wu B, Zeng Y, Song K et al (2018b) China’s wetlands loss to urban expansion. Land degradation & development 29(8):2644–2657

    Article  Google Scholar 

  • Maparu TS, Mazumder TN (2017) Transport infrastructure, economic development and urbanization in India (1990–2011): is there any causal relationship? Transportation research part A: policy and practice 100:319–336

    Google Scholar 

  • Marasinghe S, Perera P, Simpson GD, Newsome D (2021) Nature-based tourism development in coastal wetlands of Sri Lanka: an importance–performance analysis at Maduganga Mangrove Estuary. J Outdoor Recreat Tour 33:100345

    Article  Google Scholar 

  • Masron TA, Subramaniam Y (2019) Does poverty cause environmental degradation? Evidence from developing countries. J Poverty 23(1):44–64

    Article  Google Scholar 

  • Matfess H (2015) Rwanda and Ethiopia: developmental authoritarianism and the new politics of African strong men. African Studies Review 58(2):181–204

    Article  Google Scholar 

  • McCauley LA, Jenkins DG, Quintana-Ascencio PF (2013) Isolated wetland loss and degradation over two decades in an increasingly urbanized landscape. Wetlands 33(1):117–127

    Article  Google Scholar 

  • McInnes RJ (2013) Recognising wetland ecosystem services within urban case studies. Mar Freshw Res 65(7):575–588

    Article  Google Scholar 

  • Meena RAA, Sathishkumar P, Ameen F, Yusoff ARM, Gu FL (2018) Heavy metal pollution in immobile and mobile components of lentic ecosystems—a review. Environ Sci Pollut Res 25:4134–4148

    Article  Google Scholar 

  • Merlín-Uribe Y, Contreras-Hernández A, Astier-Calderón M, Jensen OP, Zaragoza R, Zambrano L (2013) Urban expansion into a protected natural area in Mexico City: alternative management scenarios. Journal of environmental planning and management 56(3):398–411

    Article  Google Scholar 

  • Mondal B, Dolui G, Pramanik M, Maity S, Biswas SS, Pal R (2017) Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol Indic 83:62–73

    Article  CAS  Google Scholar 

  • Muema JM, Kaluli JW, Gathenya JM, Mwangi BM (2018) Evaluation of wetland loss in Maragua Watershed, Murang’a County, Kenya. Journal of Sustainable Research in Engineering 4(4):160–170

    Google Scholar 

  • Nabahungu NL, Visser SM (2013) Farmers’ knowledge and perception of agricultural wetland management in RWANDA. Land Degradation & Development 24(4):363–374

    Article  Google Scholar 

  • Naikoo MW, Rihan M, Peer AH, Talukdar S, Mallick J, Ishtiaq M, Rahman A (2022) Analysis of peri-urban land use/land cover change and its drivers using geospatial techniques and geographically weighted regression. Environ Sci Pollut Res:1–19

  • Nascimento N, Vinçon-Leite B, De Gouvello B, Gutierrez L, Granceri M, Silva T, Costa H (2016) Green blue infrastructure at metropolitan scale: a water sustainability approach in the Metropolitan Region of Belo Horizonte. Brazil, In Novatech, p 2016

    Google Scholar 

  • Nyamasyo SK, Kihima BO (2014) Changing land use patterns and their impacts on wild ungulates in Kimana Wetland Ecosystem, Kenya

  • O’Donnell EC, Netusil NR, Chan FK, Dolman NJ, Gosling SN (2021) International perceptions of urban blue-green infrastructure: a comparison across four cities. Water 13(4):544

    Article  Google Scholar 

  • Obia AE, Itam EB, Archibong AE (2015) Urban development in the third world and threat to wetlands: the case study of Calabar. Nigeria Global Journal of Engineering Research 14(1):33–45

    Article  Google Scholar 

  • Olusola A, Muyideen A, Abel O (2016) Anassessment of wetland loss in Lagos Metropolis. Nigeria, Developing Country Studies

    Google Scholar 

  • Omayer, H. M. (2022). Stakeholders’ visual preferences relationships of landscape design elements in constructed wetland parks.

    Book  Google Scholar 

  • O’Neill BC, Ren X, Jiang L, Dalton M (2012) The effect of urbanization on energy use in India and China in the iPETS model. Energy Econ 34:S339–S345

    Article  Google Scholar 

  • Pal S, Akoma OC (2009) Water scarcity in wetland area within Kandi block of West Bengal: a hydro-ecological assessment. Ethiopian Journal of Environmental Studies and Management 2:1–17

    Article  Google Scholar 

  • Pal S, Debanshi S (2022) Exploring the effect of wastewater pollution susceptibility towards wetland provisioning services. Ecohydrology & Hydrobiology 23:162–176

    Article  Google Scholar 

  • Pal S, Sarkar R, Saha TK (2022) Exploring the forms of wetland modifications and investigating the causes in lower Atreyee river floodplain area. Eco Inform 67:101494

    Article  Google Scholar 

  • Pal S, Talukdar S, Ghosh R (2020) Damming effect on habitat quality of riparian corridor. Ecol Indic 114:106300

    Article  Google Scholar 

  • Pal S, Talukdar S (2018) Application of frequency ratio and logistic regression models for assessing physical wetland vulnerability in Punarbhaba river basin of Indo-Bangladesh. Hum Ecol Risk Assess Int J 24(5):1291–1311

    Article  CAS  Google Scholar 

  • Pandey B, Seto KC (2015) Urbanization and agricultural land loss in India: comparing satellite estimates with census data. J Environ Manage 148:53–66

    Article  Google Scholar 

  • Pattison-Williams JK, Pomeroy JW, Badiou P, Gabor S (2018) Wetlands, flood control and ecosystem services in the Smith Creek Drainage Basin: a case study in Saskatchewan, Canada. Ecol Econ 147:36–47

    Article  Google Scholar 

  • Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol Conserv 127(3):272–281

    Article  Google Scholar 

  • Pejic Bach M, Tustanovski E, Ip AW, Yung KL, Roblek V (2019) System dynamics models for the simulation of sustainable urban development: a review and analysis and the stakeholder perspective. Kybernetes: The International Journal of Systems & Cybernetics 49(2):460–504

    Article  Google Scholar 

  • Peteet DM, Nichols J, Kenna T, Chang C, Browne J, Reza M et al (2018) Sediment starvation destroys New York City marshes’ resistance to sea level rise. Proc Natl Acad Sci 115(41):10281–10286

    Article  CAS  Google Scholar 

  • Petrişor AI, Hamma W, Nguyen HD, Randazzo G, Muzirafuti A, Stan MI et al (2020) Degradation of coastlines under the pressure of urbanization and tourism: evidence on the change of land systems from Europe. Asia and Africa Land 9(8):275

    Google Scholar 

  • Pozzer AC, Gómez PA, Weiss J (2022) Volatile organic compounds in aquatic ecosystems—detection, origin, significance and applications. Sci Total Environ:156155

  • Prasher K (2018) The state of India’s disappearing 919 wetlands. The Weather Channel India, https://weather.com/en-IN/india/news/news/2018-11-08-the-case-of-indias- disappearing wetlands. Accessed 25 June 2022

  • Prieto M (2015) Privatizing water in the Chilean Andes: the case of Las Vegas de Chiu-Chiu. Mountain Research and Development 35(3):220–229

    Article  Google Scholar 

  • Puga D (1998) Urbanization patterns: European versus less developed countries. Journal of Regional Science 38(2):231–252

    Article  CAS  Google Scholar 

  • Qin B, Zhang Y (2014) Note on urbanization in China: urban definitions and census data. China Economic Review 30:495–502

    Article  Google Scholar 

  • Quétier F, Regnery B, Levrel H (2014) No net loss of biodiversity or paper offsets? A critical review of the French no net loss policy. Environ Sci Policy 38:120–131

    Article  Google Scholar 

  • Rahman MM, Szabó G (2021) Impact of land use and land cover changes on urban ecosystem service value in Dhaka. Bangladesh Land 10(8):793

    Google Scholar 

  • Convention R (1971) The Ramsar Convention. In: Ramsar Center, Rue Mauverney 28, CH 1196, Gland, Switzerland

  • Convention R (2018) Global wetland outlook: state of the world’s wetlands and their services to people. Ramsar Convention Secretariat, Gland, Switzerland

    Google Scholar 

  • Rao Y, Zhou J, Zhou M, He Q, Wu J (2020) Comparisons of three-dimensional urban forms in different urban expansion types: 58 sample cities in China. Growth Chang 51(4):1766–1783

    Article  Google Scholar 

  • Rapinel S, Clément B, Dufour S, Hubert-Moy L (2018) Fine-scale monitoring of long-term wetland loss using LiDAR data and historical aerial photographs: the example of the couesnon floodplain. France Wetlands 38(3):423–435

    Article  Google Scholar 

  • Rashid I, Aneaus S (2020) Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environ Monit Assess 192(10):1–14

    Article  Google Scholar 

  • Ricart S, Rico-Amorós AM (2021) Constructed wetlands to face water scarcity and water pollution risks: learning from farmers’ perception in Alicante. Spain Water 13(17):2431

    Article  Google Scholar 

  • Rojas C, Munizaga J, Rojas O, Martínez C, Pino J (2019) Urban development versus wetland loss in a coastal Latin American city: lessons for sustainable land use planning. Land Use Policy 80:47–56

    Article  Google Scholar 

  • Rojas O, Soto E, Rojas C, López JJ (2022) Assessment of the flood mitigation ecosystem service in a coastal wetland and potential impact of future urban development in Chile. Habitat Int 123:102554

    Article  Google Scholar 

  • Russi D, ten Brink P, Farmer A, Badura T, Coates D, Förster J et al (2013) The economics of ecosystems and biodiversity for water and wetlands. IEEP, London and Brussels 78:118

    Google Scholar 

  • SAC (2011) National wetland atlas. Space application center (SAC). In: Indian Space Research Organisation (ISRO), Ahmedabad, India

  • Saha TK, Pal S (2019b) Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecol Indic 98:251–265

    Article  Google Scholar 

  • Saha TK, Pal S (2019a) Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environ Dev Sustain 21(3):1485–1505

    Article  Google Scholar 

  • Saleem M, Hussain A, Mahmood G (2018) A systematic approach for design of rainwater harvesting system and groundwater aquifer modeling. Applied Water Science 8:1–10

    Article  Google Scholar 

  • Salimi S, Almuktar SA, Scholz M (2021) Impact of climate change on wetland ecosystems: a critical review of experimental wetlands. J Environ Manage 286:112160

    Article  CAS  Google Scholar 

  • Schäfer KVR, Duman T, Tomasicchio K, Tripathee R, Sturtevant C (2019) Carbon dioxide fluxes of temperate urban wetlands with different restoration history. Agric For Meteorol 275:223–232

    Article  Google Scholar 

  • Schieder NW, Walters DC, Kirwan ML (2018) Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coast 41(4):940–951

    Article  Google Scholar 

  • Sekabira H, Nijman E, Späth L, Krütli P, Schut M, Vanlauwe B et al (2021) Circular bioeconomy in African farming systems: what is the status quo? Insights from, Rwanda, DRC, and Ethiopia

  • Shah AM, Liu G, Meng F, Yang Q, Xue J, Dumontet S et al (2021) A review of urban green and blue infrastructure from the perspective of food-energy-water nexus. Energies 14(15):4583

    Article  CAS  Google Scholar 

  • Sica YV, Quintana RD, Radeloff VC, Gavier-Pizarro GI (2016) Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci Total Environ 568:967–978

    Article  CAS  Google Scholar 

  • Siddiqui AF, Waseem A, Mamoon D (2017) Did we find alternate to GDP to measure national progress? Analysis of Harvard University’s social progress index. Turkish Economic Review 4(4):352–368

    Google Scholar 

  • Simon D, Goodness J, Lwasa S, Puppim de Oliveira JA, Macedo LV, Kavonic J et al (2021) Urban governance of and for urban green and blue infrastructure. In: Urban Ecology in the Global South. Springer, Cham, pp 403–431

    Chapter  Google Scholar 

  • Singh P, Kikon N, Verma P (2017) Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain Cities Soc 32:100–114

    Article  Google Scholar 

  • Singha P, Pal S (2023) Influence of hydrological state on trophic state in dam induced seasonally inundated flood plain wetland. Ecohydrology & Hydrobiology

  • Stefanakis AI (2022) Nature-based solutions for water pollution control: promoting environmental education through case studies. In: Enhancing Environmental Education Through Nature-Based Solutions. Springer, Cham, pp 397–411

    Chapter  Google Scholar 

  • Stiglitz, J. E., Sen, A., & Fitoussi, J. P. (2009). Report by the commission on the measurement of economic performance and social progress

    Google Scholar 

  • Sun C, Zhen L, Miah MG (2017) Comparison of the ecosystem services provided by China’s Poyang Lake wetland and Bangladesh’s Tanguar Haor wetland. Ecosyst Serv 26:411–421

    Article  Google Scholar 

  • Sundman, M. L. (2011). The Effects of the Demographic Transition on Economic Growth: Implications for Japan

    Google Scholar 

  • Tariku M, Abebayehu A (2011) The driving forces of Boye wetland degradation and its bird species composition, Jimma, Southwestern Ethiopia. Journal of Ecology and the Natural Environment 3(11):365–369

    Google Scholar 

  • Thapa S, Wang L, Koirala A, Shrestha S, Bhattarai S, Aye WN (2020) Valuation of ecosystem services from an important wetland of Nepal: a study from Begnas watershed system. Wetlands 40(5):1071–1083

    Article  Google Scholar 

  • Tiner RW (1999) A guide to wetland identification, delineation, classification, and mapping. CRC Press, Estados Unidos

    Google Scholar 

  • UNDP (2015) Transforming our world: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld. Accessed 21 June 2022

  • UNDP (2022) Human Development Report. The next frontier. Human Development and the Anthropocene. United Nations Development Programme, New York

  • Vaissière AC, Quétier F, Bierry A, Vannier C, Baptist F, Lavorel S (2021) Modeling alternative approaches to the biodiversity offsetting of urban expansion in the grenoble area (France): what is the role of spatial scales in ‘no net loss’ of wetland area and function? Sustainability 13(11):5951

    Article  Google Scholar 

  • Villa JA, Bernal B (2018) Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 114:115–128

    Article  Google Scholar 

  • Vishwanathan SS, Garg A, Tiwari V, Shukla PR (2018) India in 2 C and well below 2 C worlds: opportunities and challenges. Carbon Management 9(5):459–479

    Article  CAS  Google Scholar 

  • Wang J, Sui L, Yang X, Wang Z, Ge D, Kang J et al (2019) Economic globalization impacts on the ecological environment of inland developing countries: a case study of Laos from the perspective of the land use/cover change. Sustainability 11(14):3940

    Article  Google Scholar 

  • Wang N, Chen Z, Li T, Zhen M (2022) Spatiotemporal pattern evolution and influence mechanism of urban vertical expansion: a case study of Jiangsu Province. China Land 11(3):433

    Article  Google Scholar 

  • Wang S, Li G, Fang C (2018) Urbanization, economic growth, energy consumption, and CO2 emissions: empirical evidence from countries with different income levels. Renew Sustain Energy Rev 81:2144–2159

    Article  Google Scholar 

  • Wang X, Ning L, Yu J, Xiao R, Li T (2008) Changes of urban wetland landscape pattern and impacts of urbanization on wetland in Wuhan City. Chin Geogr Sci 18(1):47–53

    Article  Google Scholar 

  • Wang Y, Feng J, Lin Q, Lyu X, Wang X, Wang G (2013) Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China. Chin Geogr Sci 23:708–715

    Article  Google Scholar 

  • Wasswa H, Kakembo V, Mugagga F (2019) A spatial and temporal assessment of wetland loss to development projects: the case of the Kampala–Mukono Corridor wetlands in Uganda. International journal of environmental studies 76(2):195–212

    Article  Google Scholar 

  • Were D, Kansiime F, Fetahi T, Cooper A, Jjuuko C (2019) Carbon sequestration by wetlands: a critical review of enhancement measures for climate change mitigation. Earth Systems and Environment 3(2):327–340

    Article  Google Scholar 

  • Wizor CH, Wali E (2020) Geo-spatial analysis of urban wetlands loss in obio/akpor local government area of rivers state, nigeria. Asian Journal of Geographical Research. 3 (1): 35-48, 2020; Article no. AJGR. 54603ISSN: 2582, 2985

  • World Bank (2018) Country wise arable land per hectares per person. World Bank https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC?end=2018&locations=IN&start=1961(Accessed August, 2022)

  • World Bank (2022) The World Bank Annual Report 2022. The World Bank

    Book  Google Scholar 

  • Wu C, Chen W, Cao C, Tian R, Liu D, Bao D (2018) Diagnosis of wetland ecosystem health in the Zoige Wetland. Sichuan of China Wetlands 38(3):469–484

    Article  Google Scholar 

  • Xu T, Weng B, Yan D, Wang K, Li X, Bi W et al (2019) Wetlands of international importance: status, threats, and future protection. Int J Environ Res Public Health 16(10):1818

    Article  Google Scholar 

  • Xu X, Chen M, Yang G, Jiang B, Zhang J (2020) Wetland ecosystem services research: a critical review. Global Ecology and Conservation 22:e01027

    Article  Google Scholar 

  • Xu X, Huang G, Sun C, Pereira LS, Ramos TB, Huang Q, Hao Y (2013) Assessing the effects of water table depth on water use, soil salinity and wheat yield: searching for a target depth for irrigated areas in the upper Yellow River basin. Agric Water Manag 125:46–60

    Article  Google Scholar 

  • Yan G, Liu J, Zhu L, Zhai J, Cong L, Ma W et al (2018) Effectiveness of wetland plants as biofilters for inhalable particles in an urban park. J Clean Prod 194:435–443

    Article  Google Scholar 

  • Yang W, Sun T, Yang Z (2016) Does the implementation of environmental flows improve wetland ecosystem services and biodiversity? A literature review Restoration Ecology 24(6):731–742

    Article  Google Scholar 

  • Yang Y, Shen Q (2020) Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal. Environ Sci Pollut Res 27:4905–4916

    Article  CAS  Google Scholar 

  • Zhang L, Zhen Q, Cheng M, Ouyang Z (2019) The main drivers of wetland changes in the Beijing-Tianjin-Hebei region. Int J Environ Res Public Health 16(14):2619

    Article  Google Scholar 

  • Zhang W, Li W, Zhang C, Hanink DM, Liu Y, Zhai R (2018) Analyzing horizontal and vertical urban expansions in three East Asian megacities with the SS-coMCRF model. Landscape and urban planning 177:114–127

    Article  Google Scholar 

  • Zhao Y, Ji B, Liu R, Ren B, Wei T (2020) Constructed treatment wetland: glance of development and future perspectives. Water Cycle 1:104–112

    Article  Google Scholar 

  • Zhou H, Jiang H, Zhou G, Song X, Yu S, Chang J et al (2010) Monitoring the change of urban wetland using high spatial resolution remote sensing data. International Journal of Remote Sensing 31(7):1717–1731

    Article  Google Scholar 

  • Ziaul S, Pal S (2017) Estimating wetland insecurity index for Chatra wetland adjacent English Bazar Municipality of West Bengal. Spat Inf Res 25(6):813–823

    Article  Google Scholar 

Download references

Acknowledgements

For this study, we would like to extend our gratitude to Mr. Ripan Ghosh, Mr. Manabendra Let, and Mr. Rajesh Sarda for helping me with different purposes.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Swades Pal; literature review and formal analysis, Susmita Ghosh; methodology, Swades Pal and Susmita Ghosh; software, Susmita Ghosh; supervision, Swades Pal; validation: Susmita Ghosh; writing—original draft, Swades Pal and Susmita Ghosh; writing—review and editing, Swades Pal and Susmita Ghosh.

Corresponding author

Correspondence to Swades Pal.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the co-authors agreed to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Alexandros Stefanakis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Swades Pal Economic and socioecological perspectives of urban wetland loss and processes: a study from literatures. Environ Sci Pollut Res 30, 66514–66537 (2023). https://doi.org/10.1007/s11356-023-27123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27123-w

Keywords

Navigation