Skip to main content

Advertisement

Log in

Multiple strategies for the development of multienzyme complex for one-pot reactions

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main intention in the modern era is to make life and activities on earth more comfortable by adding necessary products through biological machinery. Millions of tons of biological raw materials and lignocellulosic biomass are wasted by burning each year without providing benefits to living organisms. Instead of being the cause of disturbing the natural environment by increasing global warming and pollutants worldwide, now, it is the need of the hour to develop an advanced strategy to utilize these biological raw materials to produce renewable energy resources to meet the energy crisis. The review presents the idea of multiple enzymes in one step to hydrolyze complex biomaterials into useful products. The paper discusses how multiple enzymes are arranged in a cascade for complete hydrolysis of raw material in one-pot to prevent multistep, time consuming, and expensive methods. Furthermore, there was the immobilization of multiple enzymes in a cascade system with in vitro and in vivo conditions for reusability of enzymes. The role of genetic engineering, metabolic engineering, and random mutation techniques is described for the development of multiple enzyme cascades. Techniques that are involved in the improvement of native strain to recombinant strain for the enhancement of hydrolytic capacity were used. The preparative steps, before enzymatic hydrolysis like acid, and base treatment methods are more effective for improving the hydrolysis of biomass by multiple enzymes in a one-pot system. Finally, the applications of one-pot multienzyme complexes in biofuel production from lignocellulosic biomass, biosensor production, medicine, food industry, and the conversion of biopolymers into useful products are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the all data are included in this published article.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Bahzad Ahmad Farhan and Tawaf Ali Shah wrote the manuscript. Sadia Javed, L Zhiyu, and Andong Zhang helped manuscript preparation. Li Zhihe provide idea and supervision in writing. Shehbaz Ali and Muhammad Asad did formatting.

Corresponding author

Correspondence to Tawaf Ali Shah.

Ethics declarations

Ethics approval

This is not applicable.

Consent for publication

This is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, B.A., Zhihe, L., Ali, S. et al. Multiple strategies for the development of multienzyme complex for one-pot reactions. Environ Sci Pollut Res 30, 64904–64931 (2023). https://doi.org/10.1007/s11356-023-27098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27098-8

Keywords

Navigation