Skip to main content
Log in

Viologen-functionalized magnetic material for the removal of Iodine and benzanthracene in an aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The development of magnetically active adsorbents for effective iodine removal would be highly desirable to address environmental pollution and remediation. Herein, we demonstrated the synthesis of Vio@SiO2@Fe3O4 as an adsorbent via surface functionalisation of electron-deficient bipyridium (viologen) units on the surface of magnetically active silica-coated magnetite (Fe3O4) core. This adsorbent was characterised thoroughly using various analytical techniques, such as field emission scanning electron microscopy (FESEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FETEM), Brunauer-Emmett-Teller (BET) analysis and X-ray photon analysis (XPS). The removal of triiodide from the aqueous solution was monitored via the batch method. It revealed that the complete removal was achieved upon stirring for 70 min. The thermally stable and crystalline Vio@SiO2@Fe3O4 displayed efficient removal capacity even in the presence of other competing ions and at different pHs. The adsorption kinetics data were analysed following the pseudo-first-order and pseudo-second-order models. Further, the isotherm experiment showed that the maximum uptake capacity of iodine is 1.38 g/g. It can be regenerated and reused over multiple cycles to capture iodine. Further, Vio@SiO2@Fe3O4 displayed a good removal capacity toward toxic polyaromatic, Benzanthracene (BzA) pollutant with an uptake capacity of 2445 μg/g. This effective removal of toxic pollutants iodine/benzanthracene was attributed to the strong non-covalent electrostatic and π-π interaction with electron-deficient bipyridium units.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Ahadi A, Rostamnia S, Panahi P, Wilson LD, Kong Q, An ZJ, Shokouhimehr M (2019) Palladium comprising dicationic bipyridinium supported periodic mesoporous organosilica (PMO):Pd@Bipy-PMO as an efficient hybrid catalyst for Suzuki-Miyaura cross-coupling reaction in water. Catalysts 9

  • Alvaro M, Ferrer B, Fornes V, Garcia H (2001) A periodic mesoporous organosilica containing electron acceptor viologen units. Chem Commun (Cambridge U. K.):2546–2547

  • Apostoli P, Cassano F, Clonfero E, Dell'Omo M, Fiorentino ML, Izzotti A, Minoia C, Pavanello S, Valerio F (1997) The toxicology and prevention of the risks of occupational exposure to aromatic polycyclic hydrocarbons. II. Toxicology. Exposure assessment. Environmental and biological monitoring. G Ital Med Lav Ergon 19:137–151

    CAS  Google Scholar 

  • Aulakh D, Varghese JR, Wriedt M (2015) A new design strategy to access zwitterionic metal-organic frameworks from anionic viologen derivates. Inorg Chem 54:1756–1764

    CAS  Google Scholar 

  • Bo A, Sarina S, Zheng ZF, Yang DJ, Liu HW, Zhu HY (2013) Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J Hazard Mater 246:199–205

    Google Scholar 

  • Bunkoed O, Kanatharana P (2015) Extraction of polycyclic aromatic hydrocarbons with a magnetic sorbent composed of alginate, magnetite nanoparticles and multiwalled carbon nanotubes. Microchimica Acta 182:1519–1526

    CAS  Google Scholar 

  • Chang J, Li H, Zhao J, Guan X, Li C, Yu G, Valtchev V, Yan Y, Qiu S, Fang Q (2021) Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chem Sci 12:8452–8457

    CAS  Google Scholar 

  • Chen C, Cai LX, Tan B, Zhang YJ, Yang XD, Lin S, Zhang J (2017) Flexible bipyridinium constructed porous frameworks with superior broad-spectrum adsorption toward organic pollutants. Cryst Growth Des 17:1843–1848

    CAS  Google Scholar 

  • Chen F, Yan F, Chen Q, Wang Y, Han L, Chen Z, Fang S (2014) Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans 43:13537–13544

    CAS  Google Scholar 

  • Chen J, Guo T, Ren X, Yang T, Zhang K, Guo Y, Chen X, Gui S, Wang S, Li Q, Peng C, Zhang J, Wu L (2022) Efficient capture and stabilization of iodine via gas-solid reaction using cyclodextrin metal-organic frameworks. Carbohydr Polym 291:119507

    CAS  Google Scholar 

  • Chen P, He X, Pang M, Dong X, Zhao S, Zhang W (2020) Iodine capture using Zr-based metal-organic frameworks (Zr-MOFs): adsorption performance and mechanism. ACS Appl Mater Interfaces 12:20429–20439

    CAS  Google Scholar 

  • Chircov C, Matei MF, Neacșu IA, Vasile BS, Oprea OC, Croitoru AM, Trușcă RD, Andronescu E, Sorescu I, Bărbuceanu F (2021) iron oxide-silica core-shell nanoparticles functionalized with essential oils for antimicrobial therapies. Antibiotics (Basel) 10(9):1138. https://doi.org/10.3390/antibiotics10091138

    Article  CAS  Google Scholar 

  • Corona L, Dendooven L, Chicken A, Hernández O, Iturbe R (2017) Removal of two high molecular weight PAHs from soils with different water content. Bull Environ Contam Toxicol 99:619–624

    CAS  Google Scholar 

  • Das G, Skorjanc T, Prakasam T, Nuryyeva S, Olsen JC, Trabolsi A (2017) Microwave-assisted synthesis of a viologen-based covalent organic polymer with redox-tunable polarity for dye adsorption. Rsc Adv 7:3594–3598

    CAS  Google Scholar 

  • Davies U, Kunchev T, Cosgrove P, Read N, Kowalski MA, Shwageraus E (2019) Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J Environ Manage 249:81–92

    Google Scholar 

  • Ding C, Xu J, Tong L, Gong G, Jiang W, Fu J (2017) Design and fabrication of a novel stimulus-feedback anticorrosion coating featured by rapid self-healing functionality for the protection of magnesium alloy. ACS Appl Mater Interfaces 9:21034–21047

    CAS  Google Scholar 

  • Emam HE, El-Shahat M, Abdelhameed RM (2023) Iodine removal efficiently from wastewater by magnetic Fe3O4 incorporated within activated porous cellulose. Industrial Crops and Products 193:116201

    CAS  Google Scholar 

  • Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T (2013) Capture of iodine in highly stable metal-organic frameworks: a systematic study. Chem Commun (Camb) 49:10320–10322

    CAS  Google Scholar 

  • Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int 2016:7840161

    Google Scholar 

  • Gong T, Yang X, Fang J-J, Sui Q, Xi F-G, Gao E-Q (2017) Distinct chromic and magnetic properties of metal-organic frameworks with a redox ligand. ACS Appl Mater Interfaces 9:5503–5512

    CAS  Google Scholar 

  • Guan Y, Li Y, Zhou J, Zhang T, Ding J, Xie Z, Wang L (2021) Defect engineering of nanoscale Hf-based metal-organic frameworks for highly efficient iodine capture. Inorg Chem 60:9848–9856

    CAS  Google Scholar 

  • Han Q, Wang ZH, Xia JF, Chen S, Zhang XQ, Ding MY (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395

    CAS  Google Scholar 

  • Harijan DKL, Chandra V, Yoon T, Kim KS (2018) Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J Hazard Mater 344:576–584

    CAS  Google Scholar 

  • Hoskins JS, Karanfil T, Serkiz SM (2002) Removal and sequestration of iodide by using silver impregnated activated carbon. Abstr Pap Am Chem S 224:U530–U530

    Google Scholar 

  • Howard BJ et al (2013) The IAEA handbook on radionuclide transfer to wildlife. J Environ Radioact 121:55–74

    CAS  Google Scholar 

  • Hu K, Cheng J, Zhang W, Pang T, Wu X, Zhang Z, Huang Y, Zhao W, Zhang S (2020) Simultaneous extraction of diverse organic pollutants from environmental water using a magnetic covalent organic framework composite. Anal Chim Acta 1140:132–144

    CAS  Google Scholar 

  • Huang GX, Ma J, Li JS, Yan LJ (2021a) Removal of 1,2-benzanthracene via the intercalation of 1,2-benzanthracene with DNA and magnetic bead-based separation. Nucleos Nucleot Nucl 40:137–156

    CAS  Google Scholar 

  • Huang GX, Li JS, Yan LJ, Ma J (2022) Adsorption of 1, 2-benzanthracene from aqueous solution by DNA-conjugated magnetic nanoparticles. Water Air Soil Poll 233:9

    CAS  Google Scholar 

  • Huang M, Yang L, Li XY, Chang GJ (2020) An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation-pi and electrostatic forces. Chem Commun 56:1401–1404

    CAS  Google Scholar 

  • Huang P, Kou H, Wang X, Zhou Z, Du X, Lu X (2021b) Porous cage-like hollow magnetic carbon-doped CoO nanocomposite as an advanced sorbent for magnetic solid-phase extraction of nine polycyclic aromatic hydrocarbons. Talanta 227:122149

    CAS  Google Scholar 

  • Inbaraj BS, Sridhar K, Chen BH (2021) Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J Hazard Mater 415:125701

    CAS  Google Scholar 

  • Jang J, Lee DS (2018) Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution: optimization using response surface methodology. Sci Total Environ 615:549–557

    CAS  Google Scholar 

  • Jeong H, Lee DW, Hong SJ, Kim J, Kim M, Kim J, Lee HS, Park T-H, Kim H-K, Park JI, Kim J-Y, Lim SH, Hyeon T, Han B, Bae S-E (2022) Selective removal of radioactive iodine from water using reusable Fe@Pt adsorbents. Water Research 222:118864

    CAS  Google Scholar 

  • Jo S-E, Choi J-W, Choi S-J (2021): Synthesis of silver-impregnated magnetite mesoporous silica composites for removing iodide in aqueous solution, Toxics

  • Jung IK, Jo Y, Han SC, Yun JI (2020) Efficient removal of iodide anion from aqueous solution with recyclable core-shell magnetic Fe3O4 @Mg/Al layered double hydroxide (LDH). Sci Total Environ 705

  • Karanfil T, Moro EC, Serkiz SM (2005) Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ Technol 26:1255–1262

    CAS  Google Scholar 

  • Kolhatkar AG, Chen YT, Chinwangso P, Nekrashevich I, Dannangoda GC, Singh A, Jamison AC, Zenasni O, Rusakova IA, Martirosyan KS, Litvinov D, Xu SJ, Willson RC, Lee TR (2017) Magnetic sensing potential of Fe3O4 nanocubes exceeds that of Fe3O4 nanospheres. Acs Omega 2:8010–8019

    CAS  Google Scholar 

  • Lamberto M, Yildiz I, Sortino S, Raymo FM (2010) Self-assembling films of chiral bipyridinium bisthiols. J Mater Chem 20:981–989

    CAS  Google Scholar 

  • Lamichhane S, Bal Krishna KC, Sarukkalige R (2016) Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148:336–353

    CAS  Google Scholar 

  • Laouameur K, Flilissa A, Erto A, Balsamo M, Ernst B, Dotto G, Benguerba Y (2021) Clorazepate removal from aqueous solution by adsorption onto maghnite: experimental and theoretical analysis. J Mol Liq 328

  • Lebel LS, Dickson RS, Glowa GA (2016) Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J Environ Radioact 151(Pt 1):82–93

    CAS  Google Scholar 

  • Lee JW, Cha DK, Oh YK, Ko KB, Song JS (2009) Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater. J Hazard Mater 164:67–72

    CAS  Google Scholar 

  • Li J, Wang M, Liu G, Zhang L, He Y, Xing X, Qian Z, Zheng J, Xu C (2018) Enhanced Iodide removal from water by nano-silver modified anion exchanger. Ind Eng Chem Res 57:17401–17408

    CAS  Google Scholar 

  • Li X, Zeng DL, He ZY, Ke P, Tian YS, Wang GH (2022) Magnetic chitosan microspheres: an efficient and recyclable adsorbent for the removal of iodide from simulated nuclear wastewater. Carbohyd Polym 276:118729

    CAS  Google Scholar 

  • Li Y, Li Z, Li R, Wang H, Zhao Y, Pei Y, Wang J (2023) Highly efficient triiodide ion adsorption from water by ionic liquid hybrid metal–organic frameworks. J Mol Liq 370:121009

    CAS  Google Scholar 

  • Liu AF, Che HW, Jiang RJ (2013) Hexagonal mesoporous fluorescent hybrid materials with electron acceptor viologen units in the framework. J Porous Mat 20:579–586

    CAS  Google Scholar 

  • Liu JJ, Fu JJ, Li GJ, Liu T, Xia SB, Cheng FX (2021a) A water-stable photochromic MOF with controllable iodine sorption and efficient removal of dichromate. Crystengcomm 23:7628–7634

    CAS  Google Scholar 

  • Liu Y, Wang P, Gojenko B, Yu J, Wei L, Luo D, Xiao T (2021b) A review of water pollution arising from agriculture and mining activities in Central Asia: facts, causes and effects. Environ Pollut 291:118209

    CAS  Google Scholar 

  • Loganovsky KM, Talko VV, Kaminskyi OV, Afanasyev DE, Masiuk SV, Loganovskaya TK, Lavrenchuk GY (2019) Neuroendocrine effects of prenatal irradiation from radioactive iodine (review). Probl Radiac Med Radiobiol 24:20–58

    CAS  Google Scholar 

  • Madrakian T, Afkhami A, Zolfigol MA, Ahmadi M, Koukabi N (2012) Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples. Nano-Micro Letters 4:57–63

    CAS  Google Scholar 

  • Mao P, Liu Y, Liu XD, Wang YC, Liang J, Zhou QH, Dai YX, Jiao Y, Chen SW, Yang Y (2017) Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution. Chemosphere 180:317–325

    CAS  Google Scholar 

  • Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N (2019) Effects of pollution on marine organisms. Water Environ Res 91:1229–1252

    CAS  Google Scholar 

  • Montaseri H, Alipour S, Vakilinezhad MA (2017) Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method. Res Pharm Sci 12:274–282

    Google Scholar 

  • Nguyen MD, Tran HV, Xu SJ, Lee TR (2021) Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci-Basel 11:11301

    CAS  Google Scholar 

  • Oliveira RVM, Lima JRA, Cunha GC, Romão LPC (2020) Use of eco-friendly magnetic materials for the removal of polycyclic aromatic hydrocarbons and metals from environmental water samples. J Environ Chem Eng 8:104050

    CAS  Google Scholar 

  • Pal S, Jagadeesan D, Gurunatha KL, Eswaramoorthy M, Maji TK (2008) Construction of bi-functional inorganic-organic hybrid nanocomposites. J Mater Chem 18:5448–5451

    CAS  Google Scholar 

  • Pang LL, Zhang WF, Zhang WY, Chen P, Yu J, Zhu GT, Zhu SK (2017) Magnetic graphene solid-phase extraction in the determination of polycyclic aromatic hydrocarbons in water. Rsc Adv 7:53720–53727

    CAS  Google Scholar 

  • Passon M, Ruff A, Schuler P, Speiser B, Dreiling I (2014a) Stepwise solid-phase synthesis and solid- state electrochemistry of redox-active viologen core/shell-structured modified silica materials. Chemelectrochem 1:263–280

    Google Scholar 

  • Passon M, Ruff A, Schuler P, Speiser B, Dreiling I (2014b) Stepwise solid-phase synthesis and solid-state electrochemistry of redox-active viologen core/shell-structured modified silica materials. ChemElectroChem 1:263

    Google Scholar 

  • Patil S, Tandon R, Tandon N (2021) A current research on silica coated ferrite nanoparticle and their application: review. Curr Res in Green and Sustain Chem 4:100063

    CAS  Google Scholar 

  • Polo AMS, Lopez-Penalver JJ, Sanchez-Polo M, Rivera-Utrilla J, Lopez-Ramon MV, Rozalen M (2020) Halide removal from water using silver doped magnetic-microparticles. J Environ Manage 253

  • Pravalie R, Bandoc G (2018) Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J Environ Manage 209:81–92

    Google Scholar 

  • Raisbeck GM, Yiou F (1999) 129I in the oceans: origins and applications. Sci Total Environ 237-238:31–41

    CAS  Google Scholar 

  • Rodríguez-Estupiñán P, Correa-Navarro YM, Giraldo L, Moreno-Piraján JC (2021) Lignocellulosic wastes as precursor of carbonaceous magnetic adsorbents by organic and inorganic pollutants adsorption. In: Meili L, Dotto GL (eds) Advanced Magnetic Adsorbents for Water Treatment. Environmental Chemistry for a Sustainable World, p 61

    Google Scholar 

  • Salbu B (2009) Fractionation of radionuclide species in the environment. J Environ Radioact 100:283–289

    CAS  Google Scholar 

  • Sellaoui L, Dhaouadi F, Taamalli S, AlZahrani HYS, Louis F, El Bakali A, Erto A, Ben Lamine A, Lima DR, Lima EC, Chen Z (2022) Application of a multilayer physical model for the critical analysis of the adsorption of nicotinamide and propranolol on magnetic-activated carbon. Environ Sci Pollut R 29:30184–30192

    CAS  Google Scholar 

  • Sen A, Sharma S, Dutta S, Shirolkar MM, Dam GK, Let S, Ghosh SK (2021) Functionalized ionic porous organic polymers exhibiting high iodine uptake from both the vapor and aqueous medium. ACS Applied Materials & Interfaces 13:34188–34196

    CAS  Google Scholar 

  • Shen L, Li B, Qiao Y, Song J (2019) Monodisperse Fe3O4/SiO2 and Fe3O4/SiO2/PPy core-shell composite nanospheres for IBU loading and release. Materials (Basel) 12:828

    CAS  Google Scholar 

  • Shen YX, Jiang B, Xing Y (2021) Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants. Environ Sci Pollut R 28:7599–7620

    CAS  Google Scholar 

  • Simon SL, Luckyanov N, Bouville A, VanMiddlesworth L, Weinstock RM (2002) Transfer of 131I into human breast milk and transfer coefficients for radiological dose assessments. Health Phys 82:796–806

    CAS  Google Scholar 

  • Skorjanc T, Shetty D, Gandara F, Ali L, Raya J, Das G, Olson MA, Trabolsi A (2020) Remarkably efficient removal of toxic bromate from drinking water with a porphyrin-viologen covalent organic framework. Chemical Science 11:845–850

    CAS  Google Scholar 

  • Sun JK, Yang XD, Yang GY, Zhang J (2019) Bipyridinium derivative-based coordination polymers: from synthesis to materials applications. Coordin Chem Rev 378:533–560

    CAS  Google Scholar 

  • Sun L, Zhang YJ, Ye XS, Liu HN, Zhang HF, Wu AG, Wu ZJ (2017) Removal of I- from aqueous solutions using a biomass carbonaceous aerogel modified with KH-560. Acs Sustain Chem Eng 5:7700–7708

    CAS  Google Scholar 

  • Suorsa V, Otaki M, Zhang WZ, Virkanen J, Koivula R (2020) A simple method for quantifying iodate and iodide fractions in solution using Ag+-impregnated activated carbon. J Radioanal Nucl Ch 324:135–142

    CAS  Google Scholar 

  • Tan DQ, Jin J, Guo CC, Dhanjai CJP (2020) Magnetic magnesium oxide composites for rapid removal of polycyclic aromatic hydrocarbons and cadmium ions from water. Environ Chem 17:479–487

    CAS  Google Scholar 

  • Tsarevsky NV (2015): Polymers with redox-active functional groups: synthetic methodologies, properties, and applications. Amer Chemical Soc, pp. POLY

  • van der Merwe A (2019) Nuclear energy saves lives. Nature 570:36

    Google Scholar 

  • Wang P, Xu Q, Li Z, Jiang W, Jiang Q, Jiang D (2018) Exceptional iodine capture in 2D covalent organic frameworks. Adv Mater 28:e1801991

    Google Scholar 

  • Wang S, Liu YC, Ye Y, Meng XY, Du JF, Song XW, Liang ZQ (2019): Ultrahigh volatile iodine capture by conjugated microporous polymer based on N,N,N ',N '-tetraphenyl-1,4-phenylenediamine electronic supplementary information (ESI) available: IR, PXRD, TGA, SEM, XPS, pore size distributions, isosteric heats and UV-vis spectra. See DOI: 10.1039/c9py00288j. Polym Chem-Uk 10, 2608-2615

  • Wang S, Hu QB, Liu YC, Meng XY, Ye Y, Liu XH, Song XW, Liang ZQ (2020) Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal. J Hazard Mater 387:121949

    CAS  Google Scholar 

  • Wu HY, Xia TT, Yin LL, Ji YQ (2021) Adsorption of iodide from an aqueous solution via calcined magnetite-activated carbon/MgAl-layered double hydroxide. Chem Phys Lett 774:138612

    CAS  Google Scholar 

  • Xu L, Lin P, Gao Y, Qin Y, Xu Z, Liu F (2022) Adsorption-induced chemical reaction for in situ immobilization of radioactive anions on pristine β-Bi2O3 microflowers. Sep Purif Technol 292:121045

    CAS  Google Scholar 

  • Yamamoto LG (2013) Risks and management of radiation exposure. Pediatr Emerg Care 29:1016–1026

    Google Scholar 

  • Yang JQ, Tai WY, Wu F, Shi KL, Jia TY, Su Y, Liu TH, Mocilac P, Hou XL, Chen XM (2022) Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: experimental and theoretical study. Chemosphere 292:133401

    CAS  Google Scholar 

  • Yang XD, Chen M, Zhu R, Zhang J, Chen B (2018) Robust nanoporous supramolecular network through charge-transfer interaction. ACS Appl Mater Interfaces 10:43987–43992

    CAS  Google Scholar 

  • Yang XM, Yan CY, Li ZY, Li X, Yu Q, Sang TT, Gai YL, Zhang QF, Xiong KC (2021) Viologen-based cationic metal-organic framework for efficient Cr2O72- adsorption and dye separation. Inorg Chem 60:5988–5995

    CAS  Google Scholar 

  • Yao QX, Pan L, Jin XH, Li J, Ju ZF, Zhang J (2009) Bipyridinium array-type porous polymer displaying hydrogen storage, charge-transfer-type guest inclusion, and tunable magnetic properties. Chem-Eur J 15:11890–11897

    CAS  Google Scholar 

  • Yu SB, Lyu H, Tian J, Wang H, Zhang DW, Liu Y, Li ZT (2016) A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polym Chem-Uk 7:3392–3397

    CAS  Google Scholar 

  • Yu WL, Dong QP, Yu WB, Qin ZH, Nie X, Wan Q, Chen XL (2022) Preparation of halloysite/Ag2O nanomaterials and their performance for iodide adsorption. Minerals-Basel 12:304

    CAS  Google Scholar 

  • Zhai L, Han D, Dong J, Jiang W, Nie R, Yang X, Luo X, Li Z (2021) Constructing stable and porous covalent organic frameworks for efficient iodine vapor capture. Macromol Rapid Commun 42:e2100032

    Google Scholar 

  • Zia MR, Raza MA, Park SH, Irfan N, Ahmed R, Park JE, Jeon J, Mushtaq S (2021) Removal of radioactive iodine using silver/iron oxide composite nanoadsorbents. Nanomaterials-Basel 11:588

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Director, CSIR-CSMCRI, for continuous support and encouragement. The authors thank the Analytical and Environment Science Division and Centralized Instrument Facilities of CSIR-CSMCRI, Bhavnagar, for analytical and technical support (CSIR-CSMCRI manuscript number 190/2022).

Funding

N.A.B. thanks the Council of Scientific and Industrial Research, India (FBR-MLP-0053 under CSIR-4M theme and MLP-0045) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Nisar Ahamed Babujohn contributes to the conceptualization, review and editing, supervision, fund management, investigation, and writing. Amoluck Eluri involved in acquisition of experimental data and investigation.

Corresponding author

Correspondence to Nisar Ahamed Babujohn.

Ethics declarations

Ethical approval and consent to participate

The authors declare that they have no known competing financial interests or personal relationships that seem to affect the work reported in this article.

Consent for publication

We do not have any individual person’s data in any form.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babujohn, N.A., Eluri, A. Viologen-functionalized magnetic material for the removal of Iodine and benzanthracene in an aqueous solution. Environ Sci Pollut Res 30, 69991–70010 (2023). https://doi.org/10.1007/s11356-023-27096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27096-w

Keywords

Navigation