Skip to main content

Advertisement

Log in

Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With ever-increasing plastic waste, a robust and sustainable methodology to valorize the waste and tweak, the composition of the value added product is the need of the hour. The present study describes the effect of different heterogeneous catalyst systems on the yield, composition and nature of the pyrolysis oil produced from various waste polyolefins like high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polypropylene (PP). The waste polyolefins were subjected to thermal as well as catalytic pyrolysis. Liquid, gas, and solid products were obtained during the pyrolysis. Various catalysts such as activated alumina (AAL), ZSM-5, FCC catalyst, and halloysite clay (HNT) were used. Usage of catalysts has reduced the temperature of the pyrolysis reaction from 470 to 450 °C with better liquid product yield. PP waste generated higher liquid yield compared to LLDPE and HDPE waste. The highest liquid yield of 70.0% was achieved with PP waste using AAL catalyst at 450 °C. The sulfur and chloride content was found to be < 10 and < 20 ppm respectively in all the pyrolysis liquid. Pyrolysis liquid products were analyzed using gas chromatography (GC), nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray fluorescence (XRF) spectroscopy, and gas chromatography coupled with mass spectrophotometry (GC–MS). The obtained liquid products consist of paraffin, naphthene, olefin and aromatic components. Catalyst regeneration experiments with AAL showed that the product distribution profile remains the same up to three cycles of regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Bineesh Vijayan Kanattukara conceptualized the work, conducted experiments, and drafted the original manuscript. Gurmeet Singh checked and reviewed the manuscript. Preetom Sarkar assisted in conducting the experiments, interpretation of the data, and drafting of manuscript. Anju Chopra reviewed the manuscript. Dheer Singh conducted the gas chromatography experiments. Sujit Mondal conducted the NMR experiments. Gurpreet Singh Kapur and Sankara Sri Venkata Ramakumar reviewed the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Bineesh Vijayan Kanattukara.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanattukara, B.V., Singh, G., Sarkar, P. et al. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil. Environ Sci Pollut Res 30, 64994–65010 (2023). https://doi.org/10.1007/s11356-023-27044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27044-8

Keywords

Navigation