Skip to main content

Advertisement

Log in

Preparation of carbon self-doped g-C3N4 for efficient degradation of bisphenol A under visible light irradiation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, visible-light-driven carbon self-doped graphitic carbon nitride photocatalyst was fabricated by a facile method with urea and ammonium citrate, and used for photodegradation of bisphenol A (BPA) in the aqueous environment. The experiments indicated that the prepared photocatalyst (C0.02CN) showed high catalytic activity, and 96.0%, 93.2%, and 95.5% BPA could be photodegraded in 150 min under pH 3, 6, and 11, respectively. The photocatalytic degradation rate (0.018 min−1) and mineralization (27.6%) of C0.02CN for BPA were about 6.7 and 3.5 times higher than those of the g-C3N4 (0.0027 min−1, 7.87%), respectively. C0.02CN had high reusability with a photodegradation efficiency of 84.5% for BPA after 3 cycles. Moreover, C0.02CN introduced additional carbon atoms, which generated C–O–C bonds in the g-C3N4 lattice. In contrast to g-C3N4, carbon doping enhanced the visible light absorption range of C0.02CN, reduced its band gap, and improved the separation efficiency of photogenerated electron–hole pairs. Radical quenching experiment and ESR results revealed that superoxide radicals (•O2) and photogenerated holes (h+) acted as important parts in the high photodegradation activity under visible light irradiation. This work puts forward a one-pot strategy for the preparation of carbon self-doped g-C3N4, displacing the high-energy consuming and complicated preparation technology with promising industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

Download references

Funding

This study was supported by the National Natural Science Foundation of China (22106184).

Author information

Authors and Affiliations

Authors

Contributions

Ling Lei: conceptualization, methodology, investigation, formal analysis, visualization, and writing—original draft; Xi He: data curation, investigation, and visualization; Xiaoyu Lin: resources and data curation; Chen Yang: data curation; Yufeng Zhao: validation; Longzhe Cui: supervision; Guiping Wu: writing—reviewing and editing.

Corresponding author

Correspondence to Guiping Wu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8342 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., He, X., Lin, X. et al. Preparation of carbon self-doped g-C3N4 for efficient degradation of bisphenol A under visible light irradiation. Environ Sci Pollut Res 30, 65328–65337 (2023). https://doi.org/10.1007/s11356-023-26928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26928-z

Keywords

Navigation