Skip to main content
Log in

Surface engineering of colloidal quaternary chalcogenide Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst for water remediation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Colloidal route synthesis of quaternary compound CZTS (Cu2ZnSnS4) has been anticipated with an inimitable combination of coordinating ligands and solvents using the hot injection technique. CZTS is recognized as one of the worthiest materials for photo-voltaic/catalytic applications due to its exclusive properties (viz., non-toxic, economical, direct bandgap, high absorbance coefficient, etc.). This paper demonstrates the formation of crystalline, single-phased, monodispersed, and electrically passivated CZTS nanoparticles using a distinctive combination of ligands viz. oleic acid (OA)-trioctylphosphine (TOP) and butylamine (BA)-trioctylphosphine (TOP). Detailed optical, structural, and electrochemical studies were done for all CZTS nanoparticles, and the most efficient composition was found using ligands butylamine and TOP. CZTS nanocrystals were rendered hydrophilic via surface-ligand engineering, which was used for photocatalysis studies of organic pollutants. Malachite green (MG) and rhodamine 6G (Rh) for water remediation have great commercial prospects. The unique selling proposition of this work is the rapid synthesis time (~ 45 min) of colloidal CZTS nanocrystals, cost-effective ligand-exchange process, and negligible material wastage (~ 200 µl per 10 ml of pollutant) during photocatalytic experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the necessary data and materials information have been already explained in this article.

References

  • Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni HJAEM (2012) A high efficiency electrodeposited Cu2ZnSnS4 solar cell. 2(2):253–259

  • Alzahrani S, Mohammad AW (2014) Challenges and trends in membrane technology implementation for produced water treatment: a review. J Water Process Eng 4:107–133

    Article  Google Scholar 

  • Ansari MZ, Faraz M, Munjal S, Kumar V, Khare N (2017) Highly dispersible and uniform size Cu2ZnSnS4 nanoparticles for photocatalytic application. Adv Powder Technol 28(9):2402–2409

    Article  CAS  Google Scholar 

  • Arthur JD, Langhus BG, Patel C (2005) Technical summary of oil & gas produced water treatment technologies. All Consulting, LLC, Tulsa, OK

  • Baibakov M, Patra S, Claude J-B, Moreau A, Lumeau J, Wenger JJAn (2019) Extending single-molecule forster resonance energy transfer (FRET) range beyond 10 nanometers in zero-mode waveguides. 13(7):8469–8480

  • Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochem Methods 2(482):580–632

    Google Scholar 

  • Chanturiya VA, Krasavtseva EA, Makarov DVJS (2022) Electrochemistry of Sulfides: Process and Environmental Aspects. 14(18):11285

  • Chen Y, Liu Y, Xie X, Li C, Si Y, Zhang M, Yan QJJoMSMiE (2019) Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation. 30(10):9311–9321

  • Currier JM, Holland JM, Drescher K, Foy D (2015) Initial psychometric evaluation of the Moral Injury Questionnaire—Military version. Clin Psychol Psychother 22(1):54–63

    Article  Google Scholar 

  • Danish M, Muneer MJCI (2021) Facile synthesis of highly efficient Co@ ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for the degradation of RhB dye: Efficiency, degradation kinetics, and mechanism pathway. 47(9):13043–13056

  • Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, Nazari M, Wali M, Zaheb H, Senjyu T (2021) Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11(1):80

    Article  CAS  Google Scholar 

  • Dilsaver PS, Reichert MD, Hallmark BL, Thompson MJ, Vela J (2014) Cu2ZnSnS4–Au heterostructures: toward greener chalcogenide-based photocatalysts. J Phys Chem C 118(36):21226–21234

    Article  CAS  Google Scholar 

  • Dores R, Hussain A, Katebah M, Adham S (2012) Using advanced water treatment technologies to treat produced water from the petroleum industry, SPE International Production and Operations Conference & Exhibition. OnePetro

  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazardous Mater 170(2–3):530–551

    Article  Google Scholar 

  • Hevekerl H, Spielmann T, Chmyrov A, Widengren JJTjopcB (2011) Forster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. 115(45):13360–13370

  • Hood SN, Walsh A, Persson C, Iordanidou K, Huang D, Kumar M, Jehl Z, Courel M, Lauwaert J, Lee SJJoPE (2019) Status of materials and device modelling for kesterite solar cells. 1(4):042004

  • Hou X, Li Y, Yan J-J, Wang C-W (2014) Highly efficient photocatalysis of p-type Cu2ZnSnS4 under visible-light illumination. Mater Res Bull 60:628–633

    Article  CAS  Google Scholar 

  • Hunge Y, Yadav A, Liu S, Mathe V (2019) Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason Sonochem 56:284–289

    Article  CAS  Google Scholar 

  • Igunnu ET, Chen GZ (2014) Produced water treatment technologies. Int J Low-Carbon Technol 9(3):157–177

    Article  CAS  Google Scholar 

  • Jain S, Singh D, Vijayan N, Sharma SN (2018) Time-controlled synthesis mechanism analysis of kesterite-phased Cu 2 ZnSnS 4 nanorods via colloidal route. Appl Nanosci 8(3):435–446

    Article  CAS  Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry

  • Kang C-C, Chen H-F, Yu T-C, Lin T-C (2013) Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Mater Lett 96:24–26

    Article  CAS  Google Scholar 

  • Kannan A, Manjulavalli T, Chandrasekaran JJPE (2016) Influence of solvent on the properties of CZTS nanoparticles. 141:15-22

  • Kush P, Deori K, Kumar A, Deka S (2015) Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr (VI) by surfactant free hydrophilic Cu 2 ZnSnS 4 nanoparticles. J Mater Chem A 3(15):8098–8106

    Article  CAS  Google Scholar 

  • Lee SL, Chang C-J (2019) Recent progress on metal sulfide composite nanomaterials for photocatalytic hydrogen production. Catalysts 9(5):457

    Article  CAS  Google Scholar 

  • Li J, Shen J, Li Z, Li X, Sun Z, Hu Z, Huang S (2013) Wet chemical route to the synthesis of kesterite Cu2ZnSnS4 nanocrystals and their applications in lithium ion batteries. Mater Lett 92:330–333

    Article  CAS  Google Scholar 

  • Lin L, Jiang W, Chen L, Xu P, Wang H (2020) Treatment of produced water with photocatalysis: recent advances, affecting factors and future research prospects. Catalysts 10(8):924

    Article  CAS  Google Scholar 

  • Liu W, Guo B, Wu X, Zhang F, Mak C, Wong K (2013) Facile hydrothermal synthesis of hydrotropic Cu 2 ZnSnS 4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 1(9):3182–3186

    Article  CAS  Google Scholar 

  • Loeb SK, Alvarez PJ, Brame JA, Cates EL, Choi W, Crittenden J, Dionysiou DD, Li Q, Li-Puma G, Quan X (2018) The technology horizon for photocatalytic water treatment: sunrise or sunset? ACS Publications

  • Ma R, Sun J, Li DH, Wei JJJIJoHE (2020) Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. 45(55):30288–30324

  • Mahjoubi S, Bitri N, Abaab M, Ly I (2018) Effect of copper concentration on the characteristics of Cu2ZnSnS4 (CZTS) thin films. Mater Lett 216:154–157

    Article  CAS  Google Scholar 

  • Munirasu S, Haija MA, Banat F (2016) Use of membrane technology for oil field and refinery produced water treatment—a review. Process Saf Environ Prot 100:183–202

    Article  CAS  Google Scholar 

  • Nhalil H, Han D, Du M-H, Chen S, Antonio D, Gofryk K, Saparov B (2018) Optoelectronic properties of candidate photovoltaic Cu2PbSiS4, Ag2PbGeS4 and KAg2SbS4 semiconductors. J Alloy Compd 746:405–412

    Article  CAS  Google Scholar 

  • Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. New Jersey, 383–389

  • Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7(4):241–245

    Article  CAS  Google Scholar 

  • Pahang F, Parvin P, Ghafoori-Fard H, Bavali A, Moafi AJOC (2020) Fluorescence properties of methylene blue molecules coupled with metal oxide nanoparticles. 3(3):688-697

  • Patel JB, Tiwana P, Seidler N, Morse GE, Lozman OR, Johnston MB, Herz LMJAam, interfaces (2019) Effect of ultraviolet radiation on organic photovoltaic materials and devices. 11(24):21543–21551

  • Peng H, Guo JJECL (2020) Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. 18(6):2055–2068

  • Persson CJJoAP (2010) Electronic and optical properties of Cu 2 ZnSnS 4 and Cu 2 ZnSnSe 4. 107(5):053710

  • Phaltane SA, Vanalakar S, Bhat T, Patil P, Sartale S, Kadam L (2017) Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. J Mater Sci: Mater Electron 28(11):8186–8191

    CAS  Google Scholar 

  • Rajesh G, Muthukumarasamy N, Subramanian E, Venkatraman M, Agilan S, Ragavendran V, Thambidurai M, Velumani S, Yi J, Velauthapillai D (2015) Solution-based synthesis of high yield CZTS (Cu2ZnSnS4) spherical quantum dots. Superlattices Microstruct 77:305–312

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMJEi (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. 122:52–66

  • Roelofs KE, GuoQ, Subramoney S, Caspar JVJJoMCA (2014) Investigation of local compositional uniformity in Cu 2 ZnSn (S, Se) 4 thin film solar cells prepared from nanoparticle inks. 2(33):13464–13470

  • Sakr ME, Abou Kana MT, Abdel Fattah GJL (2014) Fluorescence enhancement monitoring of pyrromethene laser dyes by metallic Ag nanoparticles. 29(7):938–944

  • Scragg JJ (2011) Copper zinc tin sulfide thin films for photovoltaics: synthesis and characterisation by electrochemical methods. Springer Science & Business Media

  • Sekar RB, Periasamy AJTJocb (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. 160(5):629

  • Semalti P, Sharma V, Sharma SNJJoM (2021) A novel method of water remediation of organic pollutants and industrial wastes by solution-route processed CZTS nanocrystals. 7(5):904–919

  • Sharma SN, Kumar U, Singh V, Mehta B, Kakkar R (2010) Surface modification of CdSe quantum dots for biosensing applications: role of ligands. Thin Solid Films 519(3):1202–1212

    Article  CAS  Google Scholar 

  • Si KJ, Chen Y, Shi Q, Cheng W (2018) Nanoparticle superlattices: the roles of soft ligands. Advanced Science 5(1):1700179

    Article  Google Scholar 

  • Singh A, Gupta G, Vijayan N, Sharma SN (2018) Precursor ratio optimizations for the synthesis of colloidal CZTS nanoparticles for photocatalytic degradation of malachite green. J Phys Chem Solids 122:8–18

    Article  Google Scholar 

  • Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green MA (2014) Fabrication of Cu 2 ZnSnS 4 solar cells with 51% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. J Mater Chem A 2(2):500–509

    Article  CAS  Google Scholar 

  • Thomas AN, Root RA, Lantz RC, Sáez AE, Chorover JJG (2018) Oxidative weathering decreases bioaccessibility of toxic metal (loid) s in PM10 emissions from sulfide mine tailings. 2(4):118–138

  • Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HCJAm (2006) Fluorescence enhancement by metal‐core/silica‐shell nanoparticles. 18(1):91–95

  • Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y, Xie R, Leung DY, Huang H (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ Int 125:200–228

    Article  CAS  Google Scholar 

  • Vanalakar S, Agwane G, Gang M, Patil P, Kim J, Kim J (2015) A mild hydrothermal route to synthesis of CZTS nanoparticle inks for solar cell applications. physica status solidi (c) 12(6):500–503

  • Wang J, Zhang P, Song X, Gao LJRa (2014a) Surfactant-free hydrothermal synthesis of Cu 2 ZnSnS 4 (CZTS) nanocrystals with photocatalytic properties. 4(53):27805–27810

  • Wang X, Kou D-X, Zhou W-H, Zhou Z-J, Wu S-X, Cao X (2014b) Cu 2 ZnSnSe 4 nanocrystals capped with S 2− by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination. Nanoscale Res Lett 9(1):1–7

    Article  Google Scholar 

  • Wei X, Zhu G, Fang J, Chen J (2013) Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles. Int J Photoenergy 2013.

  • Xu X, Sun Y, Fan Z, Zhao D, Xiong S, Zhang B, Zhou S, Liu G (2018) Mechanisms for· O2-and· OH production on flowerlike BiVO4 photocatalysis based on electron spin resonance. Front Chem 6:64

    Article  Google Scholar 

  • Yang S, Prendergast D, Neaton JBJNl (2012) Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation. 12(1):383–388

  • Yoshida T, Yamaguchi A, Umezawa N, Miyauchi MJTJoPCC (2018) Photocatalytic CO2 reduction using a pristine Cu2ZnSnS4 film electrode under visible light irradiation. 122(38):21695–21702

  • Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot AJJotACS (2014) Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. 136(26):9236–9239

  • Yuan X-ZR, Song C, Wang H, Zhang J (2009) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. Springer Science & Business Media

  • Zhou Y-L, Zhou W-H, Du Y-F, Li M, Wu S-X (2011) Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater Lett 65(11):1535–1537

    Article  CAS  Google Scholar 

  • Zhou Z, Zhang P, Lin Y, Ashalley E, Ji H, Wu J, Li H, Wang Z (2014) Microwave fabrication of Cu 2 ZnSnS 4 nanoparticle and its visible light photocatalytic properties. Nanoscale Res Lett 9(1):1–6

    Article  Google Scholar 

Download references

Acknowledgements

The author (PS) sincerely acknowledges the National Physical Laboratory (NPL), Council of Scientific & Industrial Research (CSIR) and AcSIR for providing the necessary facilities to carry out the experimental work, and also thanks CSIR for providing Research Fellowship (#31/001(0521)/2018-EMR-I)

Funding

Funding was provided by the CSIR-Council of Scientific and Industrial Research (#31/001(0521)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

Pooja Semalti: conceptualization, original draft, methodology, investigation, data curation.

Meenakshi Devi, P. Prathap, Naval Kishor Upadhyay, Vikash Sharma: resources and software.

Shailesh Narain Sharma: supervision; validation; visualization; review; and editing.

Corresponding author

Correspondence to Shailesh Narain Sharma.

Ethics declarations

Ethical approval

This study was approved by the Doctoral Advisory Committee of CSIR-National Physical Laboratory, Delhi, India.

Consent to participate

Authors gives their full consent to participate.

Consent to publish

Authors give their full consent to publish without any conflict.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Synopsis: Production in each stage produces hazardous biproducts which mainly cause pollution, affecting human health. Present work highlights the degradation of hazardous water pollutants containing chemical dyes and toxic pollutants, using ligand-assisted non-toxic and cost-effective Cu2ZnSnS4 nanoparticles.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 290 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semalti, P., Sharma, V., Devi, M. et al. Surface engineering of colloidal quaternary chalcogenide Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst for water remediation. Environ Sci Pollut Res 30, 79774–79788 (2023). https://doi.org/10.1007/s11356-023-26603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26603-3

Keywords

Navigation