Skip to main content

Advertisement

Log in

Catalytic performance of activated lignite chars on biomass tar cracking

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The tar problems are the major obstacle to developing the biomass pyrolysis technology. The coal chars derived from in situ pyrolysis and/or partially gasification are a promising alternative tar cracking catalyst with great industrial application potential because of its cheap and easily available characteristics. This work investigated the application of lignite chars as catalysts for biomass tar decomposition. Raw lignite char was further gasified with CO2 for 5 min (GC5) and 15 min (GC15) and used as tar cracking catalysts. Effects of pyrolysis temperature, char/biomass mass ratio, and pore structure of char on the pyrolysis tar removal were studied. The results showed that increasing pyrolysis temperature and char/biomass mass ratio would promote tar decomposition. When using GC15 as catalyst, tar yield was as low as 0.10 wt% at the temperature of 850 °C and the mass ratio of 2. Gasification treatment increased the specific surface area of raw char from 284.1 to 342.7 m2/g (GC5) and 435.6 m2/g (GC15). Comparing the catalytic activity of lignite chars with commercial activated carbon demonstrated that mesopores were more influential than micropores in tar removal. In addition, water produced during biomass pyrolysis could in situ contribute to tar reforming and char gasification reactions. The results obtained in this study suggested that a cheaper coal char-based catalyst with excellent performance for biomass tar cracking could be achieved by combining with a coal gasification process and optimizing gasification conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

Download references

Funding

The authors are grateful to the financial supports from the National Natural Science Foundation of China (Grant No. 51676028).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hao Zhang and Xingli Gong. The first draft of the manuscript was written by Chongcong Li and revised by Yan Zhang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, H., Gong, X. et al. Catalytic performance of activated lignite chars on biomass tar cracking. Environ Sci Pollut Res 30, 57331–57339 (2023). https://doi.org/10.1007/s11356-023-26541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26541-0

Keywords

Navigation