Skip to main content
Log in

Silicon-mediated alleviation of cadmium toxicity in soil–plant system: historical review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The contamination of crops by Cd is a worldwide problem that needs to be addressed for minimizing risk for human health. Today, numerous investigations have demonstrated that Si plays a role in reducing Cd toxicity and accumulation in cultivated plants. The evolution of scientific understanding — the Cd behavior in soil and in plant is discussed for the first time. Our analysis evidences that the research on Si-Cd interactions in the soil–plant system has quickened only in recent years, although basic interactions between silicic acid and Cd cations in aqueous systems were studied over 40–50 years ago. Today, numerous direct and indirect mechanisms of the Si impact on mobility and translocation of Cd in soil and in plants are reported. More productive studies in this area are those that considered the soil–plant system as a whole. Analysis of the development of the Cd-Si-related ideas suggests the prospects of further studies aimed at finding synergetic action of Si and other substances on Cd behavior in the soil–plant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data availability statement is present within the text of the manuscript.

References

  • Adrees M, Ali S, Rizwan M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  Google Scholar 

  • Aguilar-Islas AM, Bruland KW (2006) Dissolved manganese and silicic acid in the Columbia River plume: a major source to the California current and coastal waters off Washington and Oregon. Mar Chem 101(3–4):233–247

    Article  CAS  Google Scholar 

  • Alharby HF, Al-Zahrani HS, Abbas G (2022) Potassium and silicon synergistically increase cadmium and lead tolerance and phytostabilization by quinoa through modulation of physiological and biochemical attributes. Toxics 10(4):169

    Article  CAS  Google Scholar 

  • Balakhnina TI, Bulak P, Matichenkov VV, Kosobryukhov AA, Wlodarczyk TM (2015) The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regul 77:557–565

    Article  Google Scholar 

  • Barceló JU, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Article  Google Scholar 

  • Barceló J, Poschenrieder C, Andreu I, Gunse B (1986) Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv Contender) I. Effects of Cd on water potential, relative water content, and cell wall elasticity. J Plant Phys 125(1–2):17–25

    Article  Google Scholar 

  • Beveridge D, Day P (1979) Charge transfer in mixed-valence solids. Part 9. Preparation, characterization, and optical spectroscopy of the mixed-valence mineral voltaite [aluminium pentairon (II) tri-iron (III) dipotassium dodecasulphate 18-hydrate] and its solid solutions with cadmium (II). J Chem Soc Dalton Trans 4:648–653

    Article  Google Scholar 

  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):71

    Article  CAS  Google Scholar 

  • Birdi KAS (2008) Handbook of surface and colloid chemistry. CRC Press

    Book  Google Scholar 

  • Bocharnikova EA, Matichenkov VV, Pinsky DL (1995) The influence of soluble silica acids on behaviour of heavy metals in soil and natural waters. Proc. World-Wide Symp. Pollution in Large Cities. Italy, 43–50

  • Bocharnikova EA, Matichenkov VV (2012) Influence of plant associations on the silicon cycle in the soil-plant ecosystem. App Ecol Environ Res 10(4):547–560

    Article  Google Scholar 

  • Breuer KH, Eysel W (1983) Crystal chemistry of compounds M3O [TO4]. Zeitschrift für Kristallographie-Crystalline Materials 162(1–4):289–298

  • Brown MT, Lippiatt SM, Bruland KW (2010) Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar Chem 122(1–4):160–175

    Article  CAS  Google Scholar 

  • Cai Y, Zhang S, Cai K, Huang F, Pan B, Wang W (2020) Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 242:125–128

    Article  Google Scholar 

  • Chen HM, Zheng CR, Tu C, She ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  Google Scholar 

  • Cieslinski GL, Neilsen VG (1997) Monitoring and distribution of toxic and essential elements at the soil/root interface by low temperature scanning electron microscope and energy dispersive X-ray microanalysis (SEM-EDX). Acta Hortic 448:251–252

    Google Scholar 

  • da Cunha PVK, do Nascimento CWA, da Silva AJ (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J Plant Nutr Soil Sci 171(6):849–853

    Article  Google Scholar 

  • Das S, Biswas AK (2022) Comparative study of silicon and selenium to modulate chloroplast pigments levels, Hill activity, photosynthetic parameters and carbohydrate metabolism under arsenic stress in rice seedlings. Environ Sci Pollut Res 29(13):19508–19529

    Article  CAS  Google Scholar 

  • Dietzel M (2002) Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I, Bucher K (eds) Water-Rock Interaction. Water Science and Technology Library. Springer, Dordrecht, pp 207–235. https://doi.org/10.1007/978-94-010-0438-1_9

    Chapter  Google Scholar 

  • Dresler S, Wojcik M, Bednarek W, Hanaka A, Tukiendorf A (2015) The effect of siliconon maize growth under cadmium stress. Russ J Plant Physl 62(1):86–92

    Article  CAS  Google Scholar 

  • Emadian SF, Newton RJ (1989) Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon. J Plant Phys 134(1):98–103

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Xie Y, Sangari S (2018) Silicon mechanisms to ameliorate heavy metal stress in plants. BioMed Res Inter 2018:8492898

    Article  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotox Environ Saf 96:242–249

    Article  CAS  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hort 123(4):521–530

    Article  CAS  Google Scholar 

  • Feng J, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Japan Acad, Series B 87(7):377–385

    Article  Google Scholar 

  • Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J (2018) Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ 631:1100–1108

    Article  Google Scholar 

  • Gardiner J (1974) The chemistry of cadmium in natural water—II. The adsorption of cadmium on river muds and naturally occurring solids. Water Res 8(3):157–164

    Article  CAS  Google Scholar 

  • Gary LW, de Jong BHWS, Walter D, EJr, (1982) A 29Si NMR study of silica species in dilute aqueous solution. Geoch Cosmoch Acta 46(7):1317–1320

    Article  Google Scholar 

  • Glasser LD, Glasser FP (1964) The preparation and crystal data of the cadmium silicates CdSiO3, Cd2SiO4, and Cd3SiO5. Inorg Chem 3(9):1228–1230

    Article  Google Scholar 

  • Grant CA, Buckley WT, Bailey LD, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78(1):1–17

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG et al (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and redmud. Environ Poll 142:530–539

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (2019) Silicon reduces cadmium and arsenic levels in field-grown crops. Silicon 11:2371–2375

    Article  CAS  Google Scholar 

  • Gu A, Li Z, Ye Z, Jiang L (2010) Aqueous cadmium ion removal by functionalized SBA-15 materials. Fresenius Environmental Bulletin 19(8):1447–1452

    Google Scholar 

  • Guerriero G, Hausman JF, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290(1):103–114

    Article  CAS  Google Scholar 

  • Haacke G (1977) Evaluation of cadmium stannate films for solar heat collectors. Appl Phys Lett 30(8):380–381

    Article  CAS  Google Scholar 

  • Haynes RJ, Zhou YF (2018) Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils. Chemosphere 193:431–437

    Article  CAS  Google Scholar 

  • Haynes RJ (2014) A contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844

    Article  CAS  Google Scholar 

  • Hiemstra T, Barnett MO, van Riemsdijk WH (2007) Interaction of silicic acid with goethite. J Coll Inter Sci 310(1):8–17

    Article  CAS  Google Scholar 

  • Huang HL, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, Xiong S, Tu S (2021) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Haz Mater 401:123393

    Article  CAS  Google Scholar 

  • Huang F, Wen XH, Cai YX, Cai KZ (2018) Silicon-mediated enhancement of heavy metal tolerance in rice at different growth stages. Inter J Environ Res Pub Health 15(10):2193

    Article  CAS  Google Scholar 

  • Long L, Huang N, Liu X, Gong L, Xu M, Zhang S, ..., Yang G (2023) Enhanced silicate remediation in cadmium-contaminated alkaline soil: amorphous structure improves adsorption performance. J Environ Manage 326:116760

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Imseng M, Wiggenhauser M, Keller A, Müller M, Rehkämper M, Murphy K, Bigalke M (2018) Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environ Sci Tech 52(4):1919–1928

    Article  CAS  Google Scholar 

  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Tu S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manag 183:521–529

    Article  CAS  Google Scholar 

  • Igarashi M, Matsumoto T, Yagihashi F, Yamashita H, Ohhara T, Hanashima T, Nakao A, Moyoshi T, Sato K, Shimada S (2017) Non-aqueous selective synthesis of orthosilicic acid and its oligomers. Nat Commun (1):1–8

  • Jia-Wen W, Yu S, Yong-Xing Z, Yi-Chao W, Hai-Jun G (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825. https://doi.org/10.1016/S1002-0160(13)60073-9

    Article  Google Scholar 

  • Ji X, Liu S, Huang J, Bocharnikova E, Matichenkov V (2016) Monosilicic acid potential in phytoremediation of the contaminated areas. Chemosphere 157:132–136

    Article  CAS  Google Scholar 

  • Ji X, Liu S, Juan H, Bocharnikova EA, Matichenkov VV (2017) Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Environ Sci Poll Res 24(11):10740–10748

    Article  CAS  Google Scholar 

  • Johnson BB (1990) Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite. Environ Sci Technol 24(1):112–118

    Article  CAS  Google Scholar 

  • Jurkić LM, Cepanec I, Pavelić SK, Pavelić K (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acidreleasing compounds: new perspectives for therapy. Nutrition & Metabolism 10(1):2

    Article  Google Scholar 

  • Kesraoui-Ouki S, Cheeseman CR, Perry R (1994) Natural zeolite utilisation in pollution control: a review of applications to metals’ effluents. J Chem Technol Biotechnol 59(2):121–126

    Article  CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontiers in plant science 8:510

    Article  Google Scholar 

  • Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, ..., Huang L (2021) Effects of silicon on heavy metal uptake at the soil-plant interphase: a review. Ecotox Environ Saf 222:112510

  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, ..., Pathak H (2020) Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ 699:134330

  • Kley M, Kempter A, Boyko V, Huber K (2017) Silica polymerization from supersaturated dilute aqueous solutions in the presence of alkaline earth salts. Langmuir 33(24):6071–6083. https://doi.org/10.1021/acs.langmuir.7b00887

    Article  CAS  Google Scholar 

  • Knight CT, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. Stud Plant Sci Elsevier 8:57–84

    Article  CAS  Google Scholar 

  • Kreszies T, Kreszies V, Ly F, Thangamani PD, Shellakkutti N, Schreiber L (2020) Suberized transport barriers in plant roots: the effect of silicon. J Exp Bot 71(21):6799–6806

    Article  CAS  Google Scholar 

  • Laslo V, Mihaj T, Balint L, Imre LY (1994) Silicon-rich sorbent for radioactive isotopes of metals and toxic heavy metals and its pharmacological composition. Russian Federation Patent 2 025 801 C1

  • Laxen DP (1983) Cadmium adsorption in freshwaters—a quantitative appraisal of the literature. Sci Total Environ 30:129–146

    Article  CAS  Google Scholar 

  • Li L, Li Y, Wang Y, Tang M, Ai S (2021) Si-rich amendment combined with irrigation management to reduce Cd accumulation in brown rice. J Soil Sci Plant Nutr 21(4):3221–3231

    Article  CAS  Google Scholar 

  • Li P, Wang XX, Zhang TL, Zhou DM, He YQ (2009) Distribution and accumulation of copper and cadmium in soil–rice system as affected by soil amendments. Water Air Soil Poll 196(1):29–40

    Article  CAS  Google Scholar 

  • Li XY, Long J, Peng PQ, Chen Q, Dong X, Jiang K, ..., Liao BH (2018) Evaluation of calcium oxide of quicklime and Si–Ca–Mg fertilizer for remediation of Cd uptake in rice plants and Cd mobilization in two typical Cd-polluted paddy soils. Inter J Environ Res 12(6):877–885

  • Li Z, Delvaux B (2019) Phytolith-rich biochar: a potential Si fertilizer in desilicated soils. Gcb Bioenergy 11(11):1264–1282

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Poll 147(2):422–428

    Article  CAS  Google Scholar 

  • Liang Y, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58(4):475–483

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. John Wiley and Sons Ltd p 450

  • Liu Z, Yin Y, Liu W, Dunford M (2015) Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics 103:135–158

    Article  Google Scholar 

  • Ma C, Ci K, Zhu J, Sun Z, Liu Z, Li X, ..., Liu Z (2021) Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Sci Total Environ 759:143501

  • Malčovská SM, Dučaiová Z, Maslaňáková I, Bačkor M (2014) Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water Air Soil Poll 225(8):1–11

    Google Scholar 

  • Matichenkov VV, Snyder GH (1996) The mobile silicon compounds in some South Florida soils. Eurasian Soil Sci 12:1165–1180

    Google Scholar 

  • Matichenkov VV, Bocharnikova EA, Kosobrukhov AA, Biel KY (2008) Mobile forms of silicon in plants. Dokl Biol Sci 418(1):39–44. https://doi.org/10.1007/s10630-008-1013-8

    Article  CAS  Google Scholar 

  • Matichenkov VV, Bocharnikova EA, Pahnenko EP, Khomiakov DM, Matichenkov IV, Qiang Z, Xiao W (2016) Reduction of Cd, Cu, Ni, and Pb mobility by active Si in a laboratory study. Mine Water Environ 35(3):302–309

    Article  CAS  Google Scholar 

  • Matychenkov IV, Khomyakov DM, Pakhnenko EP, Bocharnikova EA, Matychenkov VV (2016) Mobile Si-rich compounds in the soil–plant system and methods for their determination. Moscow Univ Soil Sci Bull 71(3):120–128

    Article  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exper Bot 120:8–17

    Article  CAS  Google Scholar 

  • Mohsenzadeh S, Shahrtash M, Mohabatkar H (2011) Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iran J Sci Tech (sciences) 35(1):57–60

    Google Scholar 

  • Mondal B, Ghosh D, Das AK (2009) Thermochemistry for silicic acid formation reaction: prediction of new reaction pathway. Chemical Physics Letters 478(4):115–119

    Article  CAS  Google Scholar 

  • Mu J, Hu Z, Huang L, Tang S, Holm PE (2019a) Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. J Soils Sedim 19(5):2277–2289

    Article  CAS  Google Scholar 

  • Mu J, Hu Z, Xie Z, Huang L, Holm PE (2019b) Influence of CaO-activated silicon-based slag amendment on the growth and heavy metal uptake of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. Environ Sci Poll Res 26(31):32243–32254

    Article  CAS  Google Scholar 

  • Mullin JB, Riley JP (1955) The colorimetric determination of silicate with reference to sea and natural waters. Anal Chem Act 12:162–176. https://doi.org/10.1016/S0003-2670(00)87825-3

    Article  CAS  Google Scholar 

  • Nabiev AT, Asaduloina PD, Pesticov SV (2009) Thermodynamic analysis of silicate cadmium formation in water solutions. Bashkiria Chem J 6(4):145–148

    Google Scholar 

  • Naeem A, Ghafoor A, Farooq M (2015) Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J Sci Food and Agric 95(12):2467–2472

    Article  CAS  Google Scholar 

  • Nakamura R, Ishizawa H, Wagai R, Suzuki S, Kitayama K, Kitajima K (2019) Silicon cycled by tropical forest trees: effects of species, elevation and parent material on Mount Kinabalu. Malaysia Plant Soil 443(1):155–166

    Article  CAS  Google Scholar 

  • Nelson DM, Dortch Q (1996) Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer. Marine Ecol Prog Ser 136:163–178

    Article  CAS  Google Scholar 

  • Neumann D, Nieden Uz (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  Google Scholar 

  • Ning RY (2010) Reactive silica in natural waters—a review. Desal Wat Treat 21(1–3):79–86

    Article  CAS  Google Scholar 

  • Nishizawa H, Koizumi M (1975) Synthesis and infrared spectra of Ca3Mn2Si3O12 and Cd3B2Si3O12 (B: Al, Ga, Cr, V, Fe, Mn) garnets. Am Mineral: J Earth Plan Mater 60(1–2):84–87

    CAS  Google Scholar 

  • Nguyen MN, Picardal F, Dultz S, Nguyen-Thanh L, Dam T, Nguyen KM (2017) Effect of silicic acid on the aggregation properties of goethite. Eur J Soil Sci 68(5):650–657. https://doi.org/10.1111/ejss.12453

    Article  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311(1):73–86

    Article  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Prot Res 10(2):518–528

    Article  CAS  Google Scholar 

  • Orlov DS (1985) Soil Chemistry. Moscow State University, Moscow

    Google Scholar 

  • Peng H, Ji X, Wei W, Bocharnikova E, Matichenkov V (2017) As and Cd sorption on selected Si-rich substances. Water Air Soil Poll 228(8):1–11

    Article  Google Scholar 

  • Qin SQ, Huang QH (1997) Effect of silicon on uptake of cadmium by rice. Environ Prote Xinjiang 19:51–53 ((in Chinese))

    Google Scholar 

  • Ravera O (1986) Cadmium in freshwater ecosystems. In: Cadmium in the environment. Birkhäuser Basel 75–87

  • Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021) Cadmium uptake and translocation: synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 129690

  • Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    Article  Google Scholar 

  • Rui C, Zhang C, Zhao Y et al (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Poll Res 25(3):1–8

    Google Scholar 

  • Saleem MH, Parveen A, Khan SU, Hussain I, Wang X, Alshaya H, ..., Ali S (2022) Silicon fertigation regimes attenuates cadmium toxicity and phytoremediation potential in two maize (Zea mays L.) cultivars by minimizing its uptake and oxidative stress. Sustainability 14(3):1462

  • Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199

    Article  CAS  Google Scholar 

  • Schaller J, Frei S, Rohn L, Gilfedder BS (2020) Amorphous silica controls water storage capacity and phosphorus mobility in soils. Front Environ Sci 8:94

    Article  Google Scholar 

  • Schaller J, Puppe D, Kaczorek D, Ellerbrock R, Sommer M (2021) Silicon cycling in soils revisited. Plants 10(2):295

    Article  CAS  Google Scholar 

  • Schindler PW, Furst BJ, Dick R, Wolf P (1976) Ligand properties of surface silanol groups. I. surface complex formation with Fe3+, Cu2+, Cd3+, and Pb2+. J Colloid Interface Sci 55(2):469–475

    Article  CAS  Google Scholar 

  • Shao JF, Che N, Yamaji RF, Shen Ma JF (2017) Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J Exp Bot 68:5641–5651. https://doi.org/10.1093/jxb/erx364

    Article  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Grow Regul 61(1):45–52

    Article  CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272(1):53–60

    Article  CAS  Google Scholar 

  • Shiyu QIN, Hongen LIU, Zhaojun NIE, Rengel Z, Wei GAO, Chang LI, Peng ZHAO (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30(2):168–180

    Article  Google Scholar 

  • Sokolova ТА (1985) Clay minerals in soil of humid regions of USSR. Nauka, Novosibirsk

    Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Haz Mater 172(1):74–83

    Article  CAS  Google Scholar 

  • Su M, Tang J, Liao C, Kong L, Xiao T, Shih K, Zhang H (2018) Cadmium stabilization via silicates formation: efficiency, reaction routes and leaching behavior of products. Environ Poll 239:571–578

    Article  CAS  Google Scholar 

  • Sui F, Wang J, Zuo J, Joseph S, Munroe P, Drosos M, Pan G (2020) Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China. Sci Total Environ 709:136101

    Article  CAS  Google Scholar 

  • Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ Sci Poll Res 22(13):9999–10008

    Article  CAS  Google Scholar 

  • Tirado R, Allsop M (2012) Phosphorus in agriculture: problems and solutions. Greenpeace Research Laboratories Technical Report (Review) 02-2012 (greenpeace.org)

  • Treder W, Cieslinski G (2005) Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. J Plant Nutr 28(6):917–929

    Article  CAS  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268(5209):375–379

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Improvement of crops in the era of climatic changes Springer, New York, NY 39–56

  • Tubaña B, Heckman JR (2015) Silicon in soils and plants. In: Silicon and plant diseases Springer, Cham 7–51

  • Ulrich AE (2019) Cadmium governance in Europe’s phosphate fertilizers: not so fast? Sci Total Environ 650:541–545

    Article  CAS  Google Scholar 

  • ur Rehman MZ, Rizwan M, Rauf A, Ayub MA, Ali S, Qayyum MF, ..., Sanaullah M (2019) Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains. Chemosphere 226:454-462

  • Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A (2020) Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. J Exp Bot 71(21):6744–6757

    Article  Google Scholar 

  • Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Experiment Bot 67(1):52–58

    Article  Google Scholar 

  • Vatehová Z, Kollárová K, Zelko I, Richterová-Kučerová D, Bujdoš M, Lišková D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67(3):498–504

    Article  Google Scholar 

  • Vogt CR, Ryan TR, Baxter JS (1977) High-speed liquid chromatography on cadmium-modified silica gel. J Chromatogr A 136(2):221–231

    Article  CAS  Google Scholar 

  • Wan Y, Wang K, Liu Z, Yu Y, Wang Q, Li H (2019) Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). Environ Sci Poll Res 26(16):16220–16228

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Tang Y et al (2016) Inhibition effect of silicon on cadmium accumulation and transport in rice. Ecol Environ Sci 25(11):1822–1827

    Google Scholar 

  • Wang L, Wang Y, Chen Q, Cao W, Li M, Zhang F (2000) Silicon induced cadmium tolerance of rice seedlings. J Plant Nutr 23(10):1397–1406

    Article  CAS  Google Scholar 

  • Wang Y, Xiao X, Zhang K, Chen B (2019) Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Environ Poll 248:823–833

    Article  CAS  Google Scholar 

  • Wei X, Zhang P, Zhan Q et al (2021) Regulation of As and Cd accumulation in rice by simultaneous application of lime or gypsum with Si-rich materials. Environ Sci Poll Res 28:7271–7280

    Article  CAS  Google Scholar 

  • Wei W, Ji X, Saihua L, Bocharnikova E, Matichenkov V (2022) Effect of monosilicic and polysilicic acids on Cd transport in rice, a laboratory test. J Plant Grow 41(2):818–829

    Article  CAS  Google Scholar 

  • Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453

    Article  Google Scholar 

  • Wu J, Mock HP, Giehl RF, Pitann B, Mühling KH (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    Article  CAS  Google Scholar 

  • Yang X, Wen E, Ge C, El-Naggar A, Yu H, Wang S, ..., Rinklebe J (2023) Iron-modified phosphorus-and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. J Hazard Mater 443:130203

  • Zhang PB, Zhao D, Liu Y et al (2019a) Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer. Environ Sci Poll Res 26:23638–23644

    Article  CAS  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62(3):300–307

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Ji X, Liu Y, Lin Z, Lin Z, Zhang X (2019b) Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system. J Environ Man 233:802–811

    Article  CAS  Google Scholar 

  • Zhang Z, Rengel Z, Meney K (2010) Cadmium accumulation and translocation in four emergent wetland species. Water Air Soil Pol 212(1):239–249

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Hunan Provincial Base for Scientific and Technological Innovation Cooperation, China (2018WK4013); China Central Guide the Development of Local Science and Technology Special Funds (2017XF5042); the Key Research and Development Program of Hunan Province, China (2019WK2031); and by the Ministry of Science and Higher Education of Russian Federation, theme 121040500136–7 and 121040800103–6.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Pengbo Zhang participated in the data collection and data analysis; Dr. Xiao Wei participated in the organization of review preparation; Dr. Yangzhu Zhang participated in the searching of the literature; Dr. Qiang Zhan participated in the data collection and its analysis; Dr. Elena Bocharnikova participated in the manuscript writing; Prof. Vladimir Matichenkov participated in the manuscript preparation.

Corresponding author

Correspondence to Vladimir Matichenkov.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors are agreed to be listed as authors in the current version of the manuscript.

Consent for publication

All the authors agreed for the publication of the manuscript in the Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Kitae Baek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wei, X., Zhang, Y. et al. Silicon-mediated alleviation of cadmium toxicity in soil–plant system: historical review. Environ Sci Pollut Res 30, 48617–48627 (2023). https://doi.org/10.1007/s11356-023-25983-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25983-w

Keywords

Navigation