Skip to main content

Advertisement

Log in

Evaluating the role of renewable energy and technology innovations in lowering CO2 emission: a wavelet coherence approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental sustainability is one of the most critical issues that require efficient environmental and economic policies in modern times. Advancements in renewables and green technologies contribute significantly to sustained long-term development without affecting environmental quality. Several studies focus on the association of carbon dioxide emissions (CO2e) with economic variables. However, they ignored the impact of technological innovations and renewable energy consumption on CO2e in developed countries. Therefore, this study examines the relationship between CO2e, energy consumption, gross domestic product (GDP), renewable energy consumption, and technology innovations in G-7 countries by employing cross-sectionally augmented autoregressive distributed (CS-ARDL) lag and wavelet coherence techniques during 1990–2020. The results depict that GDP and renewable energy consumption are inversely related to CO2e. A 1% increase in CO2e will decrease GDP and renewable energy consumption by 0.459 and 0.172% in the long run and by 0.471 and 0.183% in the short run in G7 countries. Technology innovations negatively impact CO2e in the short run while positively influencing it in the long run. Considering the advancements in green technologies in different energy-dependent and manufacturing sectors is crucial for a sustainable environment in the long run. Such initiatives ensure the effective use of energy sources by limiting CO2e in the atmosphere. Moreover, the dynamic common correlated effects mean group model confirms the reliability and effectiveness of the CS-ARDL. The wavelet coherence approach revealed a causality relation between CO2e and technology innovation in Italy, Japan, the UK, and the USA during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

We are thankful to World Bank and IMF for providing econometric and CO2e datasets.

Author information

Authors and Affiliations

Authors

Contributions

Usman Mehmood conducted the analysis. Salman Tariq wrote the manuscript. Zia ul Haq conceptualized the study. Hasan Nawaz conducted analysis and wrote the manuscript. Shafqat Ali wrote the manuscript.

Corresponding author

Correspondence to Hasan Nawaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ilhan Ozturk

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, U., Tariq, S., Haq, Z.u. et al. Evaluating the role of renewable energy and technology innovations in lowering CO2 emission: a wavelet coherence approach. Environ Sci Pollut Res 30, 44914–44927 (2023). https://doi.org/10.1007/s11356-023-25379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25379-w

Keywords

Navigation