Skip to main content
Log in

Carbon nanotube-based nano-biosensors for detecting heavy metals in the aquatic environment

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract 

The identification of harmful metal ions in aquatic environments is a global concern since these contaminants can have serious consequences for plants, animals, humans, and ecosystems. A biosensor is a type of analytical equipment that combines a biological recognition element and a physical transducer to detect biological signals to produce a detectable indication proportionate to the concentration of the samples being analysed. The analyte spreads from the fluid to the biosensor’s superficial. The analyte responds precisely and competently with the biosensor’s biological component. The physicochemical properties of the transducer surface change as a result of this process. The visual or electric properties of the transducer surface alter as a result of this. The signal that is detected is an electrical signal. With the help of carbon-based nano-biosensors, metals from the aquatic environment can easily be detected, which is much simpler, less time-consuming, and less expensive as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References 

  • Abu-Ali H, Nabok A, Smith T, Al-Shanawa M (2017) Inhibition biosensor based on DC and AC electrical measurements of bacteria samples. Procedia Technology 27:129–130

    Google Scholar 

  • Abu-Ali H, Nabok A, Smith TJJC (2019) Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. 7(2):27

  • Afkhami A, Bagheri H, Khoshsafar H, Saber-Tehrani M, Tabatabaee M, Shirzadmehr A (2012a) Simultaneous trace-levels determination of Hg (II) and Pb (II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. 746:98–106

  • Afkhami A, Madrakian T, Sabounchei SJ, Rezaei M, Samiee S, Pourshahbaz M (2012b) Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury (II) and cadmium (II) 161(1):542–548

    CAS  Google Scholar 

  • Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium 35:8–14

    CAS  Google Scholar 

  • Ajayan PM (1999) Nanotubes from carbon 99(7):1787–1800

    CAS  Google Scholar 

  • Alias N, Rosli SA, Sazalli NAH, Hamid HA, Arivalakan S, Umar SNH, Razak KA (2020) Metal oxide for heavy metal detection and removal. In: Metal oxide powder technologies. Elsevier, pp 299–332

    Chapter  Google Scholar 

  • Ashkenani H, Taher M (2012) Selective voltammetric determination of Cu (II) based on multiwalled carbon nanotube and nano-porous Cu-ion imprinted polymer. 683:80–87

  • Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode 186:451–460

    CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes 1(2):180–192

    CAS  Google Scholar 

  • Balootaki PA, Hassanshahian M (2014) Microbial biosensor for marine environments 3:1–13

    Google Scholar 

  • Bechor O, Smulski DR, Van Dyk TK, LaRossa RA, Belkin S (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA′:: lux fusions 94(1):125–132

  • Bui M-PN, Li CA, Han KN, Pham X-H, Seong GH (2012a) Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film 137(8):1888–1894

    Google Scholar 

  • Bui M-PN, Li CA, Han KN, Pham X-H, Seong GH (2012b) Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes 28(7):699–704

    CAS  Google Scholar 

  • Cai J, DuBow MSJB (1997) Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA) 8(2):105–111

    CAS  Google Scholar 

  • Cao L, Jia J, Wang Z (2008) Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes 53(5):2177–2182

    CAS  Google Scholar 

  • Champ MAJMPB (2003) Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems 46(8):935–940

    CAS  Google Scholar 

  • Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes 282(5386):95–98

    CAS  Google Scholar 

  • Chung JH, Hasyimah N, Hussein NJTA, Pollution S (2022) Application of carbon nanotubes (CNTs) for remediation of emerging pollutants-a review 2(1):13–26

    Google Scholar 

  • Das R, Hamid SBA, Ali ME, Ismail AF, Annuar M, Ramakrishna S (2014) Multifunctional carbon nanotubes in water treatment: the present, past and future. 354:160–179

  • Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, Mutagenesis E (2000) Improved bacterial SOS promoter∷lux fusions for genotoxicity detection 466(1):97–107

    CAS  Google Scholar 

  • de Oliveira PR, Lamy-Mendes AC, Gogola JL, Mangrich AS, Junior LHM, Bergamini M (2015) Mercury nanodroplets supported at biochar for electrochemical determination of zinc ions using a carbon paste electrode 151:525–530

    CAS  Google Scholar 

  • Deng W, Tan Y, Li Y, Wen Y, Su Z, Huang Z, Luo Y (2010) Square wave voltammetric determination of Hg (II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode 169(3–4):367–373

    CAS  Google Scholar 

  • E Pollution & DJCN Causes., percent of deaths worldwide, Cornell Study Finds

  • Foroumadi A, Shafiee A, Norouzi P (2011) Nanocomposite based carbon paste electrode for selective analysis of copper 6:52–62

    Google Scholar 

  • Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media

    Google Scholar 

  • Fu L, Li X, Yu J, Ye JJE (2013) Facile and simultaneous stripping determination of zinc, cadmium and lead on disposable multiwalled carbon nanotubes modified screen-printed electrode 25(2):567–572

    CAS  Google Scholar 

  • Ganjali MR, Motakef-Kazami N, Faridbod F, Khoee S, Norouzi P (2010) Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica 173(1–3):415–419

  • Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors 4(6):1948–1963

    CAS  Google Scholar 

  • Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays 125(30):9006–9007

    CAS  Google Scholar 

  • Gray JSJMPB (2002) Perceived and real risks: produced water from oil extraction 44(11):1171–1172

    CAS  Google Scholar 

  • Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications 23(7):1760

    Google Scholar 

  • Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011a) Lead (II) carbon paste electrode based on derivatized multiwalled carbon nanotubes: application to lead content determination in environmental samples 155(2):639–645

  • Guo X, Yun Y, Shanov VN, Halsall HB, Heineman WR (2011b) Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode 23(5):1252–1259

    CAS  Google Scholar 

  • Hassani S, Momtaz S, Vakhshiteh F, Maghsoudi AS, Ganjali MR, Norouzi P, Abdollahi M (2017) Biosensors and their applications in detection of organophosphorus pesticides in the environment 91(1):109–130

    CAS  Google Scholar 

  • He L, Zhang S, Wang M, Peng D, Yan F, Zhang Z (2016) Facile fabrication of zinc phosphate-based nanocomposites for high-performance electrochemical sensing of Hg (II) 228:500–508

    CAS  Google Scholar 

  • Henderson S, Grigson S, Johnson P, Roddie B (1999) Potential impact of production chemicals on the toxicity of produced water discharges from North Sea oil platforms 38(12):1141–1151

    CAS  Google Scholar 

  • Holdway DA (2002) The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes 44(3):185–203

    CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives 466:1047–1059

  • Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three dimensional graphene-carbon nanotubes hybrid electrode materials 852:45–54

    CAS  Google Scholar 

  • Hussein MA, El-Shishtawy RM, Alamry KA, Asiri AM, Mohamed SA (2019) Efficient water disinfection using hybrid polyaniline/graphene/carbon nanotube nanocomposites 40(21):2813–2824

    CAS  Google Scholar 

  • Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode 76(2):301–308

    CAS  Google Scholar 

  • Jacobs CB, Peairs MJ, Venton BJ (2010) Carbon nanotube based electrochemical sensors for biomolecules 662(2):105–127

    CAS  Google Scholar 

  • Jeromiyas N, Elaiyappillai E, Kumar AS, Huang S-T, Mani V (2019) Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection 95:466–474

    CAS  Google Scholar 

  • Jiang R, Liu N, Gao S, Mamat X, Su Y, Wagberg T, Hu G (2018) A facile electrochemical sensor based on PyTS–CNTs for simultaneous determination of cadmium and lead ions 18(5):1567

  • Justino CI, Freitas AC, Pereira R, Duarte AC, Santos TR (2015) Recent developments in recognition elements for chemical sensors and biosensors 68:2–17

    CAS  Google Scholar 

  • Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II) 183(1–3):402–409

    CAS  Google Scholar 

  • Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules 19(20):3214–3228

    CAS  Google Scholar 

  • Kim TH, Lee J, Hong S (2009) Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions 113(45):19393–19396

  • Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS inducing activity of genotoxic compounds 48(1):43–51

  • Krishnan A, Dujardin E, Ebbesen T, Yianilos P, Treacy M (1998) Young’s modulus of single-walled nanotubes 58(20):14013

  • Kumar H, Kumari N, Sharma R (2020) Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges 85:106438

  • Lang Q, Han L, Hou C, Wang F, Liu A (2016) A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide 156:34–41

  • Li Y, Liu X-R, Ning X-H, Huang C-C, Zheng J-B, Zhang J-C (2011) An ionic liquid supported CeO2 nanoparticles–carbon nanotubes composite-enhanced electrochemical DNA-based sensor for the detection of Pb2+ 1(4):258–263

  • Lilly M, Dong X, McCoy E, Yang L (2012) Inactivation of Bacillus anthracis spores by single-walled carbon nanotubes coupled with oxidizing antimicrobial chemicals 46(24):13417–13424

    CAS  Google Scholar 

  • Lin Z, Wu G, Zhao L, Lai KWC (2019) Carbon nanomaterial-based biosensors: a review of design and applications 13(5):4–14

  • Liu D, Mao Y, Ding L (2018) Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control 16(2):171–180

  • Majid S, El Rhazi M, Amine A, Curulli A, Palleschi G (2003) Carbon paste electrode bulk-modified with the conducting polymer poly (1, 8-diaminonaphthalene): Application to lead determination 143(2):195–204

  • March G, Nguyen TD, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis 5(2):241–275

  • Martín-Yerga D, González-García MB, Costa-García A (2012) Use of nanohybrid materials as electrochemical transducers for mercury sensors 165(1):143–150

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials 42(16):5843–5859

    CAS  Google Scholar 

  • Miners SA, Rance GA, Khlobystov AN (2016) Chemical reactions confined within carbon nanotubes 45(17):4727–4746

    CAS  Google Scholar 

  • Moyo M (2014) Horseradish peroxidase biosensor to detect zinc ions in aqueous solutions:2014

  • Musameh MM, Hickey M, Kyratzis I (2011) Carbon nanotube-based extraction and electrochemical detection of heavy metals 37(7):675–689

    CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R (2021) Carbon-based sustainable nanomaterials for water treatment: stateof-art and future perspectives 263:128005

    CAS  Google Scholar 

  • Nguyen PKQ, Lunsford SK (2012) Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium 101:110–121

    CAS  Google Scholar 

  • Niu P, Fernández-Sánchez C, Gich M, Ayora C, Roig A (2015) Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes 165:155–161

    CAS  Google Scholar 

  • Parisi L, Galli C, Neri A, Toffoli A, Calciolari E, Manfredi E, Macaluso C (2017) Aptamers improve the bioactivity of biomaterials 1:3–12

    Google Scholar 

  • Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes 39(4):507–514

    CAS  Google Scholar 

  • Rahman NA, Yusof NA, Maamor NAM, Noor SMM (2012) Development of electrochemical sensor for simultaneous determination of Cd (II) and Hg (II) ion by exploiting newly synthesized cyclic dipeptide 7(1):186–196

  • Rashidi A, Nouralishahi A, Khodadadi A, Mortazavi Y, Karimi A, Kashefi K (2010) Modification of single wall carbon nanotubes (SWNT) for hydrogen storage 35(17):9489–9495

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review 170(2-3):395–410

    CAS  Google Scholar 

  • Sadeghi S, Garmroodi A (2013) A highly sensitive and selective electrochemical sensor for determination of Cr (VI) in the presence of Cr (III) using modified multi-walled carbon nanotubes/quercetin screen-printed electrode 33(8):4972–4977

  • Saidur M, Aziz AA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review 90:125–139

  • Saleh T (2013) The role of carbon nanotubes in enhancement of photocatalysis 479–493

  • Sealy C (2013) Cleaning up water on the nanoscale 8(4):337–338

    Google Scholar 

  • Shi L, Wang Y, Chu Z, Yin Y, Jiang D, Luo J, Jin W (2017) A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy 5(5):1073–1080

    CAS  Google Scholar 

  • Tesarova E, Baldrianova L, Hocevar SB, Svancara I, Vytras K, Ogorevc B (2009) Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode 54(5):1506–1510

    CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2010) Salty water desalination using carbon nanotube sheets 258(1-3):182–186

    CAS  Google Scholar 

  • Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes 381(6584):678–680

    CAS  Google Scholar 

  • UJWWC Urgency, Marseille, France (2007) Water caucus summary

  • Upadhyayula VK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review 408(1):1–13

    CAS  Google Scholar 

  • Vikesland PJ (2018) Nanosensors for water quality monitoring. Nature Nanotech 13(8):651–660

    CAS  Google Scholar 

  • Walter I, Martinez F, Cala V (2006) Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses 139(3):507–514

    CAS  Google Scholar 

  • Wang T, Manamperi HD, Yue W, Riehl BL, Riehl BD, Johnson JM, Heineman WR (2013) Electrochemical studies of catalyst free carbon nanotube electrodes 25(4):983–990

    CAS  Google Scholar 

  • Wang T, Zhao D, Guo X, Correa J, Riehl BL, Heineman WR (2014) Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: europium 86(9):4354–4361

    CAS  Google Scholar 

  • Wang T, Zhao D, Alvarez N, Shanov VN, Heineman WR (2015) Optically transparent carbon nanotube film electrode for thin layer spectroelectrochemistry 87(19):9687–9695

    CAS  Google Scholar 

  • Wei Y, Yang R, Chen X, Wang L, Liu J-H, Huang X-J (2012) A cation trap for anodic stripping voltammetry: NH3–plasma treated carbon nanotubes for adsorption and detection of metal ions 755:54–61

    CAS  Google Scholar 

  • Wei J, Yang D, Chen H, Gao Y, Li H (2014) Stripping voltammetric determination of mercury (II) based on SWCNT-PhSH modified gold electrode 190:968–974

  • WH Organization (2002) The world health report 2002: reducing risks, promoting healthy life: World Health Organization

  • WHO & Organization (2010) Trends in maternal mortality: 1990 to 2008. Estimates developed by WHO, UNICEF, UNFPA, and The World Bank. Economics

  • Xiao L, Wildgoose GG, Compton R (2008) Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry 620(1–2):44–49

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism 195:351–364

  • Xue K, Zhou S, Shi H, Feng X, Xin H, Song W (2014) A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite 203:412–416

    CAS  Google Scholar 

  • Yang X, He Y, Wang X, Yuan R (2017) A SERS biosensor with magnetic substrate CoFe2O4@ Ag for sensitive detection of Hg2+ 416:581–586

    CAS  Google Scholar 

  • Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties 84(24):5552

    CAS  Google Scholar 

  • Yusof NA, Daud N, Saat SZM, Tee TW, Abdullah AH (2012) Electrochemical characterization of carbon nanotubes/nafion/aspartic acid modified screen printed electrode in development of sensor for determination of Pb (II) 7:10358–10364

    CAS  Google Scholar 

  • Zhang P, Dong S, Gu G, Huang TJ (2010) Simultaneous determination of Cd 2+, Pb 2+, Cu 2+ and Hg 2+ at a carbon paste electrode modified with ionic liquid-functionalized ordered mesoporous silica 31(10):2949–2954

    CAS  Google Scholar 

  • Zhang B, Chen J, Zhu H, Yang T, Zou M, Zhang M, Du M (2016) Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions 196:422–430

    CAS  Google Scholar 

  • Zhao D, Siebold D, Alvarez NT, Shanov VN, Heineman W (2017) Carbon nanotube thread electrochemical cell: detection of heavy metals 89(18):9654–9663

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rushikesh L. Chopade, Vinay Aseri, and Pritam P. Pandit. Methodology: Vinay Aseri. Software: Pritam P. Pandit and Badal Mavry. Data curation: Rushikesh L. Chopade. Validation: Rohit Kumar Verma and Apoorva Singh. Formal analysis: Mahipal Singh Sankhla. Writing—original draft preparation: Anuj Sharma and Rohit Kumar Verma. Writing—review and editing: Varad Nagar. Supervision: Garima Awasthi and Kumud Kant Awasthi. Project administration: Garima Awasthi. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mahipal Singh Sankhla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopade, R.L., Pandit, P.P., Nagar, V. et al. Carbon nanotube-based nano-biosensors for detecting heavy metals in the aquatic environment. Environ Sci Pollut Res 30, 11199–11209 (2023). https://doi.org/10.1007/s11356-022-24388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24388-5

Keywords

Navigation