Skip to main content

Advertisement

Log in

Bioefficacy of isolated compound l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester from entomopathogenic actinobacteria Actinokineospora fastidiosa against agricultural insect pests, human vector mosquitoes, and antioxidant activities

  • Recent Trends on Sustainable Agriculture through Environmental Friendly Pesticides: An Ecological Conservation Approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Spodoptera litura and Helicoverpa armigera are polyphagous pests of agricultural crops in the Asian tropics since these pests have been responsible for massive crop and carry economic losses and low commodity production. At the same time, mosquitoes are vectors for numerous dreadful diseases, which is the most important group of insect for their public health concern. Using synthetic insecticides to control the pests can lead to contamination of land surface and groundwater and impact beneficial soil organisms and nontarget species. Applications of bioactive compounds are received considerable attention across the world as alternatives to synthetic insecticides. In the current study, actinobacterial secondary metabolite was isolated from Actinokineospora fastidiosa for the first time. The effect of actinobacterial metabolite (l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester) was assessed on agricultural pest S. litura and H. armigera, mosquito vectors larvae Ae. aegypti, An. stephensi, and Cx. quinquefasciatus. The bioactive fraction was characterized through UV, FTIR, and NMR analysis. GC–MS analyses reveal the existence of a bioactive compound with a respective retention time of 19.740 responsible for larvicidal activity. The bioefficacy of the l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester showed high antifeedant activity on S. litura (80.80%) and H. armigera (84.49%); and larvicidal activity on S. litura (82.77%) and H. armigera (88.00%) at 25 μg/mL concentration, respectively. The effective LC50 values were 8.07 μg/mL (F = 2.487, r2 = 0.988, P ≤ 0.05) on S. litura and 7.53 μg/mL (F = 123.25, r2 = 0.951, P ≤ 0.05) on H. armigera. The mosquito larvicidal effect of isolated compounds l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester treated against Ae. aegypti, An. stephensi, and Cx. quinquefasciatus the obtained percentage mortality was 96.66, 83.24, 64.52, 50.00, and 40.00% against Ae. aegypti; 100.00, 86.22, 73.81, 65.37, and 56.24% against An. stephensi; 100.00, 90.00, 76.24, 68.75, and 56.23% against Cx. quinquefasciatus. The mosquito larvae of Ae. aegypti obtained LC50 value was 13.25 μg/mL, F = 28.50, r2 = 0.90; on An. stephensi was 10.19 μg/mL, F = 15.55, r2 = 0.83, and Cx. quinquefasciatus was 9.68 μg/mL, F = 20.00, r2 = 0.87. Furthermore, l-isoleucine-, N-allyloxycarbonyl-, and dodecyl ester-treated larvae produced significant pupicidal activity on S. litura (62.71%) and H. armigera (66.50%) at 25 μg/mL, along with increased larval and pupal duration as compared to control group. Treated larvae revealed obliteration in the midgut epithelial cells and destruction of microvilli was noticed as compared to the control. The isolated compounds l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester did not produce any significant mortality on zebrafish embryos in all tested concentrations on biosafety observation. The potential microbial isolated molecule may fit well in IPM programs. Since the risk to human health, the environment, etc. is unknown.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Supporting data presented in this study are available on request from the corresponding author.

References 

  • Abbott WS (1925) The value of the dry substitutes for liquid lime. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Abdelgaleil SAM, Abou-Taleb HK, Al-Nagar NMA et al (2020) Antifeedant, growth regulatory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis Boisduval. Int J Trop Insect Sci 40:423–433. https://doi.org/10.1007/s42690-019-00093-8

    Article  Google Scholar 

  • Amala K, Ganesan R, Karthi S, Senthil-Nathan S, Chellappandian M, Krutmunag P et al (2020) Larval and gut enzyme toxicity of n-hexane extract Epaltes pygmaea DC. against the arthropod vectors and its non-toxicity against aquatic predator. Toxin Reviews 40(4):681–691. https://doi.org/10.1080/15569543.2020.1748890

    Article  CAS  Google Scholar 

  • Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13:105. https://doi.org/10.1186/1471-2180-13-105

    Article  CAS  Google Scholar 

  • Arivoli S, Tennyson S (2013) Antifeedant activity, development indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J Entomol Zool Stud 1(4):87–96

    Google Scholar 

  • Arti P, Priyansh M, Devendra K (2015) A new bacterial strain Streptomyces indiaensis ( LMG 19961) and its larvicidal and histopathological effect against Anopheles stephensi : a malaria mosquito. Int Res J Biol Sci 4:43–48

    Google Scholar 

  • Balaraju K, Maheswaran R, Agastian P, Ignacimuthu S (2009) Egg hatchability and larvicidal activity of Swertia chirata Buch – Hams. ex Wall. against Aedes aegypti L. and Culex quinquefasciatus Say. Indian J Sci Technol. 2(12):46–49

    Article  CAS  Google Scholar 

  • Baskar K, Ignacimuthu S (2012) Antifeedant, larvicidal and growth inhibitory effects of ononitol monohydrate isolated from Cassia tora L against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Chemosphere 88(4):384–388. https://doi.org/10.1016/j.chemosphere.2012.02.051

    Article  CAS  Google Scholar 

  • Baskar K, Ananthi J, Ignacimuthu S (2018) Toxic effects of Solanum xanthocarpum Sch & Wendle against Helicoverpa armigera (Hub.), Culex quinquefasciatus (Say.) and Eisenia fetida (Savigny, 1826). Environ Sci Pollut Res 25:2774–2782. https://doi.org/10.1007/s11356-017-0655-1

    Article  CAS  Google Scholar 

  • Baskar K, Chinnasamy R, Pandy K, Venkatesan M, Sebastian PJ, Subban M et al (2020) Larvicidal and histopathology effect of endophytic fungal extracts of Aspergillus tamarii against Aedes aegypti and Culex quinquefasciatus. Heliyon 6(10):e05331. https://doi.org/10.1016/j.heliyon.2020.e05331

    Article  CAS  Google Scholar 

  • Baskar K, Maheswaran R, Ignacimuthu S (2012) Bioefficacy of Ceasalpinea bonduc (L.) Roxb. against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Arch Phytopathol Plant Prot 45(10):1127–1137

    Article  Google Scholar 

  • Baskar K, Maheswaran R, Kingsley S, Ignacimuthu S (2010) Bioefficacy of Couroupita guianensis (Aubl) against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae) larvae. Spanish J Agri Res 8(1):135–141

    Article  Google Scholar 

  • Baskar K, Maheswaran R, Kingsley S, Ignacimuthu S (2011) Bioefficacy of plant extracts against Asian army worm Spodoptera litura Fab.(Lepidoptera: Noctuidae). J Agri Technol 7(1):123–131

    Google Scholar 

  • Baskar K, Maheswaran R, Pavunraj M, Packiam SM, Ignacimuthu S, Duraipandiyan V, Benelli G (2018) Toxicity and antifeedant activity of Caesalpinia bonduc (L.) Roxb. (Caesalpiniaceae) extracts and fractions against the cotton bollworm Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Physiol Mol Plant Pathol 101:69–74

    Article  CAS  Google Scholar 

  • Benelli G, Govindarajan M, AlSalhi MS, Devanesan S, Maggi F (2018) High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ Sci Pollut Res Int 25(11):10383–10391

    Article  CAS  Google Scholar 

  • Bersuder P, Hole M, Smith G (1998) Antioxidants from a heated histidine-glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. JAOCS, J Am Oil Chem Soc 75:181–187. https://doi.org/10.1007/s11746-998-0030-y

    Article  CAS  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060

    Article  CAS  Google Scholar 

  • Bravo L, Saura-Calixto F, Goni I (1992) Effects of dietary fibre and tannins from apple pulp on the composition of faeces in rats. Br J Nutr 67:463–473. https://doi.org/10.1079/bjn19920051

    Article  CAS  Google Scholar 

  • Céspedes ACL, Avila JG, Marin JC et al (2006) Chapter 1 natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides. Adv Phytomedicine 3:1–27. https://doi.org/10.1016/S1572-557X(06)03001-7

    Article  Google Scholar 

  • Chuang KJ, Chen ZJ, Cheng CL, Hong GB (2018) Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. Int J Mol Sci 19(9):2726. https://doi.org/10.3390/ijms19092726

    Article  CAS  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419. https://doi.org/10.3390/ijerph8051402

    Article  CAS  Google Scholar 

  • Deepika TL, Kannabiran K, Khanna VG, Rajakumar G, Jayaseelan C, Santhoshkumar T, Rahuman AA (2012) Isolation and characterisation of acaricidal and larvicidal novel compound (2S,5R,6R)-2-hydroxy-3,5,6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol Res 111(3):1151–1163. https://doi.org/10.1007/s00436-011-2493-2

    Article  Google Scholar 

  • Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B (2017) Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat. Gujarat Front Microbiol 8:1–16. https://doi.org/10.3389/fmicb.2017.02420

    Article  Google Scholar 

  • Dinis T, Madeira V, Almeida L (1994) Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 135(1):161–169

    Article  Google Scholar 

  • El-Sayed ASA, Moustafa AH, Hussein HA, El-Sheikh AA, El-Shafey SN, Fathy NAM, Enan GA (2020) Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynancum acutum, against Spodoptera littoralis, a polyphagous insect pest. Biocatal Agric Biotechnol 101524. https://doi.org/10.1016/j.bcab.2020.101524.

  • FAO (2010) The state of food insecurity in the world - addressing food insecurity in protracted crises (2010). Food and agriculture organization of the united nations, Rome

    Google Scholar 

  • FAO (2017). The future of food and agriculture—trends and challenges. p.163 FAO publication.

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ganapathy Selvam G, Sivakumar K (2015) Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux Appl Nanosci 5:617–622. https://doi.org/10.1007/s13204-014-0356-8

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Rajendran V, Arumugam S, Sharma HC, Vadlamudi S, Bhimineni RK et al (2016) Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Nat Prod Res 30(24):2760–2769. https://doi.org/10.1080/14786419.2016.1154055

    Article  CAS  Google Scholar 

  • Helen Diana I, Jahangir SH (2019) Effect of secondary metabolites of actinobacteria strain on Leucinodes orbonalis (Guen.). Res J Life Sci Bioinfor Pharmaceut Chem Sci 5(1):90–100

    Google Scholar 

  • Huang SH, Xian JD, Kong SZ, Li YC, Xie JH, Lin J, Chen JN, Wang HF, Su ZR (2014) Insecticidal activity of pogostone against Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag Sci 70:510–516. https://doi.org/10.1002/ps.3635

    Article  CAS  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura(Lep., Noctuidae). J Agric Food Chem 49(2):715–720. https://doi.org/10.1021/jf000749t

    Article  CAS  Google Scholar 

  • Ibe I, Ajaegbu EE, Ikuesan AJ, Dieke AJ, Ezugwu OC (2020) Antimicrobial screening of the crude extract of Hannoa klaineana against some pathogens. GSC Biolog Pharma Sci 12(1):249–254

    Article  Google Scholar 

  • Isman B, Koul O, Lucyzynski A, Kaminski J (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to Azadirachtin content. J Agric Food Chem 38:1407–1411

    Article  Google Scholar 

  • Jeyasankar A, Raja N, Ignacimuthu S (2011) Insecticidal compound isolated from Syzygium lineare wall. (Myrtaceae) against Spodoptera litura (Lepidoptera: Noctuidae). Saudi J Biol Sci 18(4):329–332

    Article  CAS  Google Scholar 

  • John KMM, Harnly J, Luthria D (2018) Influence of direct and sequential extraction methodology on metabolic profiling. J Chromatogr B 1073:34–42

    Article  Google Scholar 

  • Joseph FJRS, Iniyan AM, Vincent SGP (2017) HR-LC-MS based analysis of two antibacterial metabolites from a marine sponge symbiont Streptomyces pharmamarensis ICN40. Microb Pathog 111:450–457. https://doi.org/10.1016/j.micpath.2017.09.033

    Article  CAS  Google Scholar 

  • Kamatchi PAC, Maheswaran R, Ignacimuthu S (2016) Evaluation of larval toxicity of Lantana camara L. and Catharanthus roseus L. against Culex quinquefasciatus say and Aedes aegypti L. Entomol Ornithol Herpetol 5:1–5

    Google Scholar 

  • Kamatchi PAC, Arivoli S, Maheswaran R (2016) Evaluation of larvicidal efficacy of plant extracts of Justicia adhatoda Linn., Murraya koenigii (Linn.) Spreng and Anisomeles malabarica (Linn.) against dengue vector mosquito, Aedes aegypti (Linn.) (Diptera: Culicidae. J Appl Zool Res 27:117–122

    Google Scholar 

  • Karthi S, Vasantha-Srinivasan P, Ganesan R, Ramasamy V, Senthil-Nathan S, Khater HF et al (2020) Target activity of Isaria tenuipes (Hypocreales: Clavicipitaceae) fungal strains against dengue vector Aedes aegypti (Linn.) and its non-target activity against aquatic predators. J Fungi 6(4):196. https://doi.org/10.3390/jof6040196

    Article  CAS  Google Scholar 

  • Kaur M, Chadha P, Kaur S, Kaur A, Kaur R, Yadav AK, Kaur R (2019) Evaluation of genotoxic and cytotoxic effects of ethyl acetate extract of Aspergillus flavus on Spodoptera litura. J Appl Microbiol 126:881–893. https://doi.org/10.1111/jam.14105

    Article  CAS  Google Scholar 

  • Kaur T, Vasudev A, Sohal SK, Manhas RK (2014) Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol 14:1–9. https://doi.org/10.1186/s12866-014-0227-1

    Article  CAS  Google Scholar 

  • Kim JH, Choi JY, Park DH, Park DJ, Park MG, Kim SY et al (2020) Isolation and characterization of the insect growth regulatory substances from actinomycetes. Compar Biochemand Physiol Part c: Toxicol Pharmacol 228:108651. https://doi.org/10.1016/j.cbpc.2019.108651

    Article  CAS  Google Scholar 

  • Kovendan K, Arivoli S, Maheshwaran R et al (2012) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus say (Diptera: Culicidae). Parasitol Res 111:1025–1035. https://doi.org/10.1007/s00436-012-2927-5

    Article  Google Scholar 

  • Kumar D, Chawla R, Dhamodaram P, Balakrishnan N (2014) Larvicidal activity of Cassia occidentalis (Linn.) against the larvae of Bancroftian filariasis vector mosquito Culex quinquefasciatus. J Parasitol Res. https://doi.org/10.1155/2014/236838.

  • Lagos JB, Vargas FC, de Oliveira TG et al (2015) Recent patents on the application of bioactive compounds in food: a short review. Curr Opin Food Sci 5:1–7. https://doi.org/10.1016/j.cofs.2015.05.012

    Article  Google Scholar 

  • Learmonth C, Carvalho AP (2015) Acute and chronic toxicity of nitrate to early life stages of zebrafish - setting nitrate safety levels for zebrafish rearing. Zebrafish 12:305–311. https://doi.org/10.1089/zeb.2015.1098

    Article  CAS  Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A (2005) Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. Isolate M045. J Nat Prod 68:349–353. https://doi.org/10.1021/np030518r

    Article  CAS  Google Scholar 

  • Louis MRLM, Rani VP, Krishnan P. et al. (2022) Mosquito larvicidal activity of compounds from unripe fruit peel of avocado (Persea americana Mill.). Appl Biochem Biotechnol (2022). https://doi.org/10.1007/s12010-022-03831-w

  • Maheswaran R, Baskar K, Ignacimuthu S, Maria Packiam S, Rajapandiyan K (2019) Bioactivity of Couroupita guianensis Aubl. against filarial and dengue vectors and non-target fish. South Afr J Bot 125:46–53

    Article  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110(5):1801–1813

    Article  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2013) Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf 97:26–31. https://doi.org/10.1016/j.ecoenv.2013.06.028

    Article  CAS  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2014) Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. Parasitol Res 113:3143–3150. https://doi.org/10.1007/s00436-014-4037-z

    Article  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2015) Effect of confertifolin from Polygonum hydropiper L against dengue vector mosquitoes Aedes aegypti L. Environ Sci Pollut Res 22(11):8280–8287

    Article  CAS  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2015) A novel biopesticide ponneem to control human vector mosquitoes Anopheles stephensi L. and Culex quinquefasciatus Say. Environ Sci Pollut Res 22(17):13153–13166

    Article  CAS  Google Scholar 

  • Maheswaran R, Kingsley S, Ignacimuthu S, (2008a) Larvicidal and repellent activity of Clerodendron phlomides against Culex quinquefasciatus Say (Diptera: Culicidae). In: Proc Recent Trends Insect Pest Manag. 240–243.

  • Maheswaran R, Sathish S, Ignacimuthu S (2008) Larvicidal activity of Leucas aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti L. Int J Integ Biol 2(3):214–217

    Google Scholar 

  • Maheswaran R, Sukumaran S, Nattudurai G, Ignacimuthu S (2016) Bioefficacy of essential oil from Toddalia asiatica (L) Lam against dengue vector mosquitoes Aedes aegypti L and Aedes albopictus Skuse. Indian J Nat Prod Resour 7(3):245–251

    Google Scholar 

  • Manhas RK, Kaur T (2016). Biocontrol potential of Streptomyces hydrogenans strain DH16 toward Alternaria brassicicola to control damping off and black leaf spot of Raphanus sativus. Front Plant Sci7. https://doi.org/10.3389/fpls.2016.01869.

  • Manimegalai T, Raguvaran K, Kalpana M, Maheswaran R (2020) Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10127-1

  • Manimegalai T, Raguvaran K, Kalpana M, Maheswaran R (2021) Facile synthesis of silver nanoparticles using Vernonia anthelmintica (L.) Willd. and their toxicity against Spodoptera litura (Fab.), Helicoverpa armigera (Hüb.), Aedes aegypti Linn. and Culex quinquefasciatus Say. J Clust Sci. https://doi.org/10.1007/s10876-021-02151-z.

  • Manimegalai T, Raguvaran K, Kalpana M et al (2022) Bio efficacy of synthesised silver nanoparticles using Dicrocephala integrifolia leaf extract and their insecticidal activity. Mater Lett 314:131860. https://doi.org/10.1016/j.matlet.2022.131860

    Article  CAS  Google Scholar 

  • Marimuthu J, Essakimuthu P, Janakiraman N, et al (2012) Phytochemical characterization of brown seaweed Sargassum wightii. Asian Pacific J Trop Dis https://doi.org/10.1016/S2222-1808(12)60134-0.

  • Matuszewska A, Jaszek M, Stefaniuk D et al (2018) Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive sub fractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS ONE 13:1–14. https://doi.org/10.1371/journal.pone.0197044

    Article  CAS  Google Scholar 

  • Mishra Avinash, Patel Manish Kumar, Jha Bhavanath (2015) Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. Journal of Functional Foods 13:21–31. https://doi.org/10.1016/j.jff.2014.12.027

  • Mohammadipanah F, Momenilandi M (2018) Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents. Pharm Biol 56:51–59. https://doi.org/10.1080/13880209.2017.1417451

    Article  CAS  Google Scholar 

  • Morejón B, Pilaquinga F, Domenech F, et al (2018) Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol. https://doi.org/10.1155/2018/6917938.

  • Nakasen K, Wongsrila A, Prathumtet J, Sriraj P, Boonmars T, Promsrisuk T, et al (2021) Bio efficacy of Cinnamaldehyde from Cinnamomum verum essential oil against Culex quinquefasciatus (Diptera: Culicidae). J Entomol Acarol Res 53(1).

  • Nandhini US, Sudha S, Sonu SS, Sudeeshna ND (2020) Studies on larvicidal potential of actinomycetes isolated from various regions of Chennai. Asian J Pharmaceutic 14:72–77

    CAS  Google Scholar 

  • Ningombam A, Ahluwalia V, Srivastava C, Walia S (2017) Antifeedant activity and phytochemical investigation of Millettia pachycarpa extracts against tobacco leaf eating caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). J Asia-Pacific Entomol 20(2):381–385. https://doi.org/10.1016/j.aspen.2017.01.012

    Article  Google Scholar 

  • Okuno Y, Marumoto S, Tsurumi J, Miyazawa M (2019) Biotransformation of (+)-isofraxinellone by Aspergillus niger and insect antifeedant activity. Natural Product Res 33(10):1518–1521

    Article  CAS  Google Scholar 

  • Ote M, Kanuka H (2018) A highly secure method for rearing Aedes aegypti mosquitoes. Trop Med Health 46:1–7. https://doi.org/10.1186/s41182-018-0098-5

    Article  Google Scholar 

  • Pandey S, Joshi BD, Tiwari LD (2009) Histopathological changes in the midgut of Spodoptera litura larvae on ingestion of Bacillus thuringiensis delta endotoxin. Archi Phytopathol Plant Protect 42(4):376–383

    Article  CAS  Google Scholar 

  • Patel MK, Mishra A, Jha B (2016) Non-targeted metabolite profiling and scavenging activity unveil the nutraceutical potential of psyllium (Plantago ovata forsk). Front Plant Sci 7:1–17. https://doi.org/10.3389/fpls.2016.00431

    Article  CAS  Google Scholar 

  • Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep BV (2015) Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 50(9):1479–1486. https://doi.org/10.1016/j.procbio.2015.05.022

    Article  CAS  Google Scholar 

  • Prakash VA, Sermalatha G, Selvarathinam T (2022) Extraction of bioactive compounds from Streptomyces avermitilis and Azadirachta indica and evaluation against Spodoptera litura: a green approach. J Entomol Zool 10(1):143–152

    Article  Google Scholar 

  • Ragavendran C, Manigandan V, Kamaraj C et al (2019) Larvicidal, histopathological, antibacterial activity of indigenous fungus Penicillium sp. against Aedes aegypti L and Culex quinquefasciatus (Say) (Diptera: Culicidae) and its acetylcholinesterase inhibition and toxicity assessment of zebrafish (Danio rerio). Front Microbiol 10:1–17. https://doi.org/10.3389/fmicb.2019.00427

    Article  Google Scholar 

  • Raguvaran K, Kalpana M, Manimegalai T, Maheswaran R (2021) Insecticidal, not-target organism activity of synthesised silver nanoparticles using Actinokineospora fastidiosa. J Biocat Agri Biotechnol. https://doi.org/10.1016/j.bcab.2021.102197.

  • Raguvaran K, Maheswaran R (2021) Bauhinia variegata L. and Croton sparsiflorus L. against the human vector mosquitoes Borek, S. (Eds.). New Visions in Biol Sci 4(8):90–94. https://doi.org/10.9734/bpi/nvbs/v4/2045F

    Article  Google Scholar 

  • Raguvaran K, Kalpana M, Manimegalai T, Maheswaran R (2022) Larvicidal, antibacterial, antibiofilm, and anti-quorum sensing activities of silver nanoparticles biosynthesized from Streptomyces sclerotialus culture filtrate. Mater Lett 316:132000. https://doi.org/10.1016/j.matlet.2022.132000

    Article  CAS  Google Scholar 

  • Rajesh K, Dhanasekaran D, Tyagi BK (2015) Mosquito survey and larvicidal activity of actinobacterial isolates against Culex larvae (Diptera: Culicidae). J Saudi Soc Agric Sci 14:116–122. https://doi.org/10.1016/j.jssas.2013.08.001

    Article  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protect 29(9):913–920

    Article  CAS  Google Scholar 

  • Sangkanu S, Rukachaisirikul V, Suriyachadkun C, Phongpaichit S (2017) Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microb Pathog 112:303–312. https://doi.org/10.1016/j.micpath.2017.10.010

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Kumari BR, Srinivas V, Sharma HC, Sathyadevi P, Gopalakrishnan S (2016) Assessment of a diketopiperazine, cyclo (Trp-Phe) from Streptomyces griseoplanus SAI-25 against cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Entomol Zoo 51(1):11–20

    Article  CAS  Google Scholar 

  • Saurav K, Rajakumar G, Kannabiran K et al (2013) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol Res 112:215–226. https://doi.org/10.1007/s00436-011-2682-z

    Article  Google Scholar 

  • Shankhu PY, Mathur C, Mandal A, Sagar D, Somvanshi VS, Dutta TK (2019) Txp40, a protein from Photorhabdus akhurstii conferred potent insecticidal activity against the larvae of Helicoverpa armigera , Spodoptera litura and S. exigua. Pest Management Sci https://doi.org/10.1002/ps.5732.

  • Sharma P, Kalita MC, Thakur D (2016) Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front Microbiol 7:1–17. https://doi.org/10.3389/fmicb.2016.00347

    Article  CAS  Google Scholar 

  • Shu Y, Bolton AS, Mao S et al (2018) Prediction of Supernova Rates in Known Galaxy-Galaxy Strong-lens Systems. Astrophys J 864:91. https://doi.org/10.3847/1538-4357/aad5ea

    Article  CAS  Google Scholar 

  • Sivarajan A, Shanmugasundaram T, Sangeetha M et al (2019) Screening, production, and characterization of biologically active secondary metabolite(s) from marine Streptomyces sp. PA9 for antimicrobial, antioxidant, and mosquito larvicidal activity. Indian J Geo-Marine Sci 48:1319–1326

    Google Scholar 

  • SPSS (2012) IBM SPSS statistics version 21. Boston, Mass: International Business Machines Corp 126.

  • Sukumaran S, Maheswaran R (2020) Effect of gut microbes from Eyprepocnemis alacris alacris (serv. 1838) against Culex quinquefasciatus say- an ecofriendly approach. Adv Zool Bot 8:199–208

    Article  CAS  Google Scholar 

  • Sukumaran S, Maheswaran R (2020) Larvicidal activity of Elytraria acaulis against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Arthropod Borne Dis 14:293–301

    Google Scholar 

  • Susurluk H, Çalışkan Z, Gürkan O, Kırmızıgül S, Gören N (2007) Antifeedant activity of some Tanacetum species and bioassay guided isolation of the secondary metabolites of Tanacetum cadmeum ssp. cadmeum (Compositae). Ind Crops Prod 26(2):220–228

    Article  CAS  Google Scholar 

  • Vijayabharathi R, Kumari BR, Sathya A, Srinivas V, Abhishek R, Sharma HC, Gopalakrishnan S (2014) Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Canadian J Plant Sci 94(4):759–769

    Article  Google Scholar 

  • Vinayaga Moorthi P, Balasubramanian C, Selvarani S, Radha A (2015) Efficacy of sub lethal concentration of entomopathogenic fungi on the feeding and reproduction of Spodoptera litura. Springer Plus 4(1). https://doi.org/10.1186/s40064-015-1437-1.

  • Vinayaka KS, Swarnalatha SP, Preethi HR et al (2009) Studies on In vitro antioxidant, antibacterial and insecticidal activity of methanolic extract of Abrus pulchellus Wall ( Fabaceae ). African J Basic Appl Sci 1:110–116

    Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. In Studies in Natural Products Chemistry 21:3–122

    Article  CAS  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Heal Organ 1–41.WHO/CDS/WHOPES/GCDPP/2005.11.

  • Xu L, Liang K, Duan B, Yu M, Meng W, Wang Q, Yu Q (2016) A novel insecticidal peptide SLP1 produced by Streptomyces laindensis H008 against Lipaphis erysimi. Molecules 21(8):1101

    Article  Google Scholar 

  • Yogarajalakshmi P, Venugopal Poonguzhali T, Ganesan R, Karthi S, Senthil-Nathan S, Krutmuang P et al (2020) Toxicological screening of marine red algae Champia parvula (C Agardh) against the dengue mosquito vector Aedes aegypti (Linn) and its non-toxicity against three beneficial aquatic predators. Aquatic Toxicol 222:105474. https://doi.org/10.1016/j.aquatox.2020.105474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (Dr. Rajan Maheswaran/Principal Investigator/DST-SERB project, file no. EEQ/2018/000557) is thankful to the Department of Science and Technology, New Delhi, India, for providing financial support and to Periyar University, Salem, Tamil Nadu, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

Krishnan Raguvaran: Investigation and writing—original draft. Manickam Kalpana and Thulasiraman Manimegalai: Investigation and writing—review and editing. Rajan Maheswaran: Conceptualization and supervision.

Corresponding author

Correspondence to Rajan Maheswaran.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

We confirm that if the paper is accepted, it could be published in this prestigious journal.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raguvaran, K., Kalpana, M., Manimegalai, T. et al. Bioefficacy of isolated compound l-isoleucine, N-allyloxycarbonyl-, and dodecyl ester from entomopathogenic actinobacteria Actinokineospora fastidiosa against agricultural insect pests, human vector mosquitoes, and antioxidant activities. Environ Sci Pollut Res 30, 42608–42628 (2023). https://doi.org/10.1007/s11356-022-23565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23565-w

Keywords

Navigation