Skip to main content

Advertisement

Log in

Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS)

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Following circular economy principles, the reuse or recycling of saturated adsorbents (SAs or adsorbate-laden adsorbents) into a low-cost engineered product is a valuable alternative to eliminate secondary pollution after adsorption. This review evaluates the application of SAs for the generation of products that can serve as (i) antimicrobial agents or disinfectants, (ii) materials for civil construction, (iii) catalysts, (iv) fertilizers, and (v) secondary adsorbents. The importance of SAs configuration in terms of functional groups, surface area and pore morphology played a crucial role in their reutilization. The SAs-laden silver ions (Ag+) strongly inhibit (~ 99%) the growth of Escherichia coli and Staphylococcus aureus microbes found in drinking and wastewaters. The intra-solidification of SAs containing toxic metal pollutants (As3+ and F) with cementitious materials can effectively reduce their leaching below permissible limits of USEPA standards for their utility as additives in construction work. The existence of transition metal ions (Cu2+, Cr3+/6+, Ni2+) on the surface of SAs boosted activity and selectivity towards the desired product during catalytic oxidation, degradation, and conversion processes. The thermally recycled SAs can assist in the secondary adsorption of pollutants from another waste solution due to a larger surface area (> 1000 m2g−1). However, there are chances that the SAs discussed above will contain traces of PFAS. The article summarizes the challenges, performance efficacy, and future prospects at the end of each value-added product. We also highlight critical challenges for managing PFAS-laden SAs and stimulate new perspectives to minimize PFAS in air, water, and soils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the submitted manuscript.

Abbreviations

AA:

Antimicrobial agent

A. Junii:

Acinetobacter junii

A.E.Z.:

Ammonia-enriched zeolites

C:

Catalyst

CM:

Construction material

CTC:

Chlortetracycline hydrochloride

CH:

Cyclohexene

Conv:

Conversion

CyONE:

2-Cyclohexene-1-one

CyOX:

2-Cyclohexene-1-ol

d.w:

Dry weight

E.Ac.:

Ethyl acetate

EB:

Ethylbenzene

E. coli:

Escherichia coli

Eth:

Ethanol

GR:

Growth rate

IC:

Initial concentration

IZD:

Inhibition zone diameter

LCSA:

Life cycle sustainability assessment

MB:

Methyl blue

MO:

Methyl orange

MV:

Methyl violet

MIC:

Minimum inhibitory concentration

NC:

Nitrogen content

O.Ad.:

Other adsorbents

P.Ad:

Primary adsorbent

PC:

Phosphorous content

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctane sulfonic acid

PFBA:

Perfluorobutanoic acid

PFBS:

Perfluorooctanesulfonic acid

PL:

Plant length

PGR:

Plant growth rate

RA:

Residual activity

S:

Selectivity

SA:

Saturated adsorbent

SAd:

Secondary adsorbent

S. aureus:

Staphylococcus aureus

SGR:

Seed germination rate

Sh:

Shrinkage

SL:

Seedling length

SF:

Soil Fertilizer

T:

Toluene

TBL:

Triple bottom line

TC:

Tetracycline

TF:

Traditional fertilizer

WHC:

Water-holding capacity

WRC:

Water retention capacity

ρ:

Density

σc :

Compressive strength

σf : :

Flexural strength

References

  • Afrooz MR, Moghadas BK, Tamjidi S (2022) Performance of functionalized bacterial as bio-adsorbent for intensifying heavy metal uptake from wastewater: a review study. J Alloys Compd 893:162321

    Article  CAS  Google Scholar 

  • Alalm MG, Boffito DC (2022) Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: a critical review. Chem Eng J 450:138352

  • Alam G, Ihsanullah I, Naushad M, Sillanpää M (2022) Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: recent advances and prospects. Chem Eng J 427:130011

    Article  CAS  Google Scholar 

  • Appuhamillage GA, Berry DR, Benjamin CE et al (2019) A biopolymer-based 3D printable hydrogel for toxic metal adsorption from water. Polym Int 68:964–971

    Article  CAS  Google Scholar 

  • Arora R (2019) Adsorption of heavy metals–a review. Mater Today Proc 18:4745–4750

    Article  CAS  Google Scholar 

  • Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID (2011) Waste materials–catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications. Green Chem 13:16–24

    Article  CAS  Google Scholar 

  • Ballav N, Das R, Giri S et al (2018) L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+ 2 and efficient catalytic activity of the spent adsorbent for reuse. Chem Eng J 345:621–630

    Article  CAS  Google Scholar 

  • Baskar AV, Bolan N, Hoang SA et al (2022) Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review. Sci Total Environ 822:153555. https://doi.org/10.1016/j.scitotenv.2022.153555

    Article  CAS  Google Scholar 

  • Bond GC (1987) Heterogeneous catalysis

  • Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 740:140017

    Article  CAS  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  Google Scholar 

  • Chaudhary N, Balomajumder C (2014) Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. J Taiwan Inst Chem Eng 45:852–859

    Article  CAS  Google Scholar 

  • Chen W, Fang Y, Li K et al (2020) Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl Energy 260:114242

    Article  CAS  Google Scholar 

  • Cho H, Oh D, Kim K (2005) A study on removal characteristics of heavy metals from aqueous solution by fly ash. J Hazard Mater 127:187–195

    Article  CAS  Google Scholar 

  • Cocheci L, Lupa L, Ţolea NS et al (2020) Sequential use of ionic liquid functionalized Zn-Al layered double hydroxide as adsorbent and photocatalyst. Sep Purif Technol 250:117104

    Article  CAS  Google Scholar 

  • Cordell D, Neset T-S (2014) Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob Environ Change 24:108–122

    Article  Google Scholar 

  • Death C, Bell C, Champness D et al (2021) Per-and polyfluoroalkyl substances (PFAS) in livestock and game species: a review. Sci Total Environ 774:144795

    Article  CAS  Google Scholar 

  • Delkash M, Bakhshayesh BE, Kazemian H (2015) Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous Mesoporous Mater 214:224–241

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  • Dimitrova SV, Mehanjiev DR (2000) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34:1957–1961

    Article  CAS  Google Scholar 

  • Dixit F, Dutta R, Barbeau B et al (2021) PFAS removal by ion exchange resins: a review. Chemosphere 272:129777

    Article  CAS  Google Scholar 

  • Dixit F, Zimmermann K, Alamoudi M et al (2022) Application of MXenes for air purification, gas separation and storage: a review. Renew Sustain Energy Rev 164:112527

    Article  CAS  Google Scholar 

  • DJolić M, Karanac M, Radovanović D et al (2021) Closing the loop: As (V) adsorption onto goethite impregnated coal-combustion fly ash as integral building materials. J Clean Prod 303:126924

    Article  Google Scholar 

  • Drew R, Hagen TG, Champness D (2021) Accumulation of PFAS by livestock – determination of transfer factors from water to serum for cattle and sheep in Australia. Food Addit Contam Part A 38:1897–1913

  • Dutta D, Roy SK, Talukdar AK (2017) Effective removal of Cr (VI) from aqueous solution by diamino-functionalised mesoporous MCM-48 and selective oxidation of cyclohexene and ethylbenzene over the Cr containing spent adsorbent. J Environ Chem Eng 5:4707–4715

    Article  CAS  Google Scholar 

  • Edzwald JK (1993) Coagulation in drinking water treatment: particles, organics and coagulants. Water Sci Technol 27:21–35

    Article  CAS  Google Scholar 

  • Egorova KS, Ananikov VP (2016) Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew Chem Int Ed 55:12150–12162

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J et al (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  • Fei Y, Hu YH (2022) Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. J Mater Chem A 10:1047–1085

    Article  CAS  Google Scholar 

  • Feng Y, Dionysiou DD, Wu Y et al (2013) Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: Adsorption process and disposal methodology of depleted bioadsorbents. Bioresour Technol 138:191–197. https://doi.org/10.1016/j.biortech.2013.03.146

    Article  CAS  Google Scholar 

  • Figueiredo H, Neves IC, Quintelas C et al (2006) Oxidation catalysts prepared from biosorbents supported on zeolites. Appl Catal B Environ 66:274–280

    Article  CAS  Google Scholar 

  • Figueiredo H, Silva B, Quintelas C et al (2010) Immobilization of chromium complexes in zeolite Y obtained from biosorbents: synthesis, characterization and catalytic behaviour. Appl Catal B Environ 94:1–7

    Article  CAS  Google Scholar 

  • Fu Y, Jiang J, Chen Z et al (2019) Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly (m-aminothiophenol) nanocomposite. J Mol Liq 286:110746

    Article  CAS  Google Scholar 

  • Gagliano E, Sgroi M, Falciglia PP et al (2020) Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res 171:115381

    Article  CAS  Google Scholar 

  • Gautam B, Ali SA, Chen J-T, Yu H (2021) Hybrid “kill and release” antibacterial cellulose papers obtained via surface-initiated atom transfer radical polymerization. ACS Appl Bio Mater 4:7893–7902

    Article  CAS  Google Scholar 

  • Ghisi R, Vamerali T, Manzetti S (2019) Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environ Res 169:326–341. https://doi.org/10.1016/j.envres.2018.10.023

    Article  CAS  Google Scholar 

  • Giri S, Das R, van der Westhuyzen C, Maity A (2017) An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite. Appl Catal B Environ 209:669–678

    Article  CAS  Google Scholar 

  • Glenn G, Shogren R, Jin X et al (2021) Per-and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr Rev Food Sci Food Saf 20:2596–2625

    Article  CAS  Google Scholar 

  • Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environ Sci Pollut Res 25:11729–11745

    Article  CAS  Google Scholar 

  • Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem Eng J 374:437–470

    Article  CAS  Google Scholar 

  • Gore PM, Naebe M, Wang X, Kandasubramanian B (2022a) Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. J Hazard Mater 426:127822

    Article  CAS  Google Scholar 

  • Gore PM, Naebe M, Wang X, Kandasubramanian B (2022b) Bioinspired and natural materials for oil/water separation. In: Oil− Water Mixtures and Emulsions, Volume 2: Advanced Materials for Separation and Treatment. ACS Publications, pp 107–123. https://doi.org/10.1021/bk-2022-1408.ch005

  • Gu S, Kang X, Wang L et al (2019) Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett 17:629–654

    Article  CAS  Google Scholar 

  • Guilane S, Hamdaoui O (2016) Regeneration of exhausted granular activated carbon by low frequency ultrasound in batch reactor. Desalination Water Treat 57:15826–15834

    Article  CAS  Google Scholar 

  • Gupta S, Lanjewar R, Mondal P (2022) Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts. Chemosphere 287:132220

    Article  CAS  Google Scholar 

  • Gupta S, Mondal P, Borugadda VB, Dalai AK (2021) Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: a comprehensive review. Environ Technol Innov 21:101276

    Article  CAS  Google Scholar 

  • He D, Zhang L, Zhao Y et al (2018) Recycling spent Cr adsorbents as catalyst for eliminating methylmercaptan. Environ Sci Technol 52:3669–3675

    Article  CAS  Google Scholar 

  • He H, Meng X, Yue Q et al (2021) Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg (II) capture and high catalytic activity of spent Hg (II) adsorbent. Chem Eng J 405:126743

    Article  CAS  Google Scholar 

  • Hou T, Yan L, Li J et al (2020) Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem Eng J 384:123331. https://doi.org/10.1016/j.cej.2019.123331

    Article  CAS  Google Scholar 

  • Hoydonckx HE, Van Rhijn WM, Van Rhijn W, et al (2000) Furfural and derivatives. Ullmanns Encycl Ind Chem. https://doi.org/10.1002/14356007.a12_119.pub2

  • Janousek RM, Lebertz S, Knepper TP (2019) Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ Sci Process Impacts 21:1936–1945. https://doi.org/10.1039/c9em00091g

    Article  CAS  Google Scholar 

  • Jun B-M, Lee H-K, Park S, Kim T-J (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675

    Article  Google Scholar 

  • Karanac M, DJolić M, Veljović DJordje, et al. (2018) The removal of Zn2+, Pb2+, and As (V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Manag 78:366–378

  • Kilic M, Apaydin-Varol E, Pütün AE (2011) Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J Hazard Mater 189:397–403

    Article  CAS  Google Scholar 

  • Koilraj P, Antonyraj CA, Gupta V et al (2013) Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Appl Clay Sci 86:111–118

    Article  CAS  Google Scholar 

  • Krüger O (2016) Recycled fertilizers: Do we need new regulations and analytical methods? Waste Manag 100:1–2

    Article  Google Scholar 

  • Kumar PS, Gayathri R, Rathi BS (2021) A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere 285:131438

    Article  CAS  Google Scholar 

  • Kundu S, Gupta AK (2008) Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J Hazard Mater 153:434–443

    Article  CAS  Google Scholar 

  • Laipan M, Zhu R, Chen Q et al (2015) From spent Mg/Al layered double hydroxide to porous carbon materials. J Hazard Mater 300:572–580. https://doi.org/10.1016/j.jhazmat.2015.07.057

    Article  CAS  Google Scholar 

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4:41–48

    Google Scholar 

  • Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12:1461–1478

    Article  CAS  Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Article  Google Scholar 

  • Lesmeister L, Lange FT, Breuer J et al (2021) Extending the knowledge about PFAS bioaccumulation factors for agricultural plants–a review. Sci Total Environ 766:142640

    Article  CAS  Google Scholar 

  • Li F, Duan J, Tian S et al (2020) Short-chain per-and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem Eng J 380:122506

    Article  CAS  Google Scholar 

  • Liu L, Shi H, Yu H et al (2020) The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 8:4095–4108

    Article  CAS  Google Scholar 

  • Liu X-J, Zeng H-Y, Xu S et al (2016) Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr (VI) adsorption and methyl orange oxidation catalysis. J Taiwan Inst Chem Eng 60:414–422

    Article  CAS  Google Scholar 

  • Liu Y, Chen T, Wu C et al (2014) Facile surface functionalization of hydrophobic magnetic nanoparticles. J Am Chem Soc 136:12552–12555

    Article  CAS  Google Scholar 

  • Lupa L, Filimon A, Popa A, Dunca S (2021) Development of adsorbent materials based on functionalized copolymers with future applications as antibacterial agent in life quality and environmental field. React Funct Polym 161:104845. https://doi.org/10.1016/j.reactfunctpolym.2021.104845

    Article  CAS  Google Scholar 

  • Ma W, Zong P, Cheng Z et al (2014) Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water. J Hazard Mater 266:19–25

    Article  CAS  Google Scholar 

  • Mahlangu T, Das R, Abia LK et al (2019) Thiol-modified magnetic polypyrrole nanocomposite: an effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silver-laden nanocomposite. Chem Eng J 360:423–434. https://doi.org/10.1016/j.cej.2018.11.231

    Article  CAS  Google Scholar 

  • Mahltig B, Soltmann U, Haase H (2013) Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications. Mater Sci Eng C 33:979–983. https://doi.org/10.1016/j.msec.2012.11.033

    Article  CAS  Google Scholar 

  • Mallevialle J, Odendaal PE, Wiesner MR (1996) Water treatment membrane processes. American Water Works Association

  • Markou G, Vandamme D, Muylaert K (2014) Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresour Technol 155:373–378. https://doi.org/10.1016/j.biortech.2013.12.122

    Article  CAS  Google Scholar 

  • Mashkoor F, Nasar A (2021) Environmental application of agro-waste derived materials for the treatment of dye-polluted water: A Review. Curr Anal Chem 17:904–916

    Article  CAS  Google Scholar 

  • McKay G (1995) Use of adsorbents for the removal of pollutants from wastewater. CRC Press, pp 186

  • Michalak I, Chojnacka K, Korniewicz D (2015a) New feed supplement from macroalgae as the dietary source of microelements for pigs. Open Chem 13:000010151520150149

  • Michalak I, Witek-Krowiak A, Chojnacka K, Bhatnagar A (2015b) Advances in biosorption of microelements–the starting point for the production of new agrochemicals. Rev Inorg Chem 35:115–133

    Article  CAS  Google Scholar 

  • Militao IM, Roddick FA, Bergamasco R, Fan L (2021) Removing PFAS from aquatic systems using natural and renewable material-based adsorbeNTS: A REview. J Environ Chem Eng 9:105271

    Article  CAS  Google Scholar 

  • Mishra SP (2014) Adsorption–desorption of heavy metal ions. Curr Sci 601–612

  • Mohammadi Ziarani G, Kheilkordi Z, Mohajer F (2020) Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J Iran Chem Soc 17:247–282

    Article  CAS  Google Scholar 

  • Ngah WW, Hanafiah MM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  Google Scholar 

  • Oehmen A, Viegas R, Velizarov S et al (2006) Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination 199:405–407

    Article  CAS  Google Scholar 

  • Olivera S, Muralidhara HB, Venkatesh K et al (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618

    Article  CAS  Google Scholar 

  • Omo-Okoro PN, Daso AP, Okonkwo JO (2018) A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ Technol Innov 9:100–114

    Article  Google Scholar 

  • Omorogie MO, Babalola JO, Unuabonah EI (2016) Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review. Desalination Water Treat 57:518–544. https://doi.org/10.1080/19443994.2014.967726

    Article  CAS  Google Scholar 

  • Pan J, Gao B, Duan P et al (2021) Recycling exhausted magnetic biochar with adsorbed Cu2+ as a cost-effective permonosulfate activator for norfloxacin degradation: Cu contribution and mechanism. J Hazard Mater 413:125413. https://doi.org/10.1016/j.jhazmat.2021.125413

    Article  CAS  Google Scholar 

  • Peng X, Chen W, He Z et al (2019) Removal of Cu (II) from wastewater using doped HAP-coated-limestone. J Mol Liq 293:111502

    Article  CAS  Google Scholar 

  • Poulsen PB, Jensen AA, Wallström E, Aps E (2005) More environmentally friendly alternatives to PFOS-compounds and PFOA. Environ Proj 1013:2005

    Google Scholar 

  • Purabgola A, Mayilswamy N, Kandasubramanian B (2022) Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress. Environ Sci Pollut Res 29:32305–32325

  • Qu G-Z, Li J, Wu Y et al (2009) Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma. Chem Eng J 146:168–173

    Article  CAS  Google Scholar 

  • Rahmani A, Mousavi HZ, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalination 253:94–100

    Article  CAS  Google Scholar 

  • Raj S, Sinha U, Singh H, Bhattacharya J (2022) Novel GO/Fe–Mn hybrid for the adsorptive removal of Pb(II) ions from aqueous solution and the spent adsorbent disposability in cement mix: compressive properties and leachability study for circular economy benefits. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20303-0

    Article  Google Scholar 

  • Rajhans A, Gore PM, Siddique SK, Kandasubramanian B (2019) Ion-imprinted nanofibers of PVDF/1-butyl-3-methylimidazolium tetrafluoroborate for dynamic recovery of europium (III) ions from mimicked effluent. J Environ Chem Eng 7:103068

    Article  CAS  Google Scholar 

  • Ramrakhiani L, Ghosh S, Majumdar S (2022) Heavy metal recovery from electroplating effluent using adsorption by jute waste-derived biochar for soil amendment and plant micro-fertilizer. Clean Technol Environ Policy 24:1261–1284. https://doi.org/10.1007/s10098-021-02243-4

    Article  CAS  Google Scholar 

  • Rasool K, Pandey RP, Rasheed PA et al (2019) Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater Today 30:80–102

    Article  CAS  Google Scholar 

  • Rastogi S, Kandasubramanian B (2020) Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. Environ Sci Pollut Res 27:210–237

    Article  CAS  Google Scholar 

  • Rathore VK, Mondal P (2017a) Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: preparation, characterization and leaching studies. J Environ Manage 200:160–169

    Article  CAS  Google Scholar 

  • Rathore VK, Mondal P (2017b) Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind Eng Chem Res 56:8081–8094

    Article  CAS  Google Scholar 

  • Rezaie AB, Montazer M, Rad MM (2018) Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. J Clean Prod 204:425–436

    Article  Google Scholar 

  • Röhler K, Haluska AA, Susset B et al (2021) Long-term behavior of PFAS in contaminated agricultural soils in Germany. J Contam Hydrol 241:103812

    Article  Google Scholar 

  • Saeid A, Chojnacka K, Korczyński M et al (2013) Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J Appl Phycol 25:667–675

    Article  CAS  Google Scholar 

  • Saeid A, Chojnacka K, Opaliński S, Korczyński M (2016) Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for laying hens. Algal Res 19:342–347

    Article  Google Scholar 

  • Saikia J, Goswamee RL (2019) Use of carbon coated ceramic barriers for adsorptive removal of fluoride and permanent immobilization of the spent adsorbent barriers. SN Appl Sci 1:1–11

    Article  Google Scholar 

  • Saleh NB, Khalid A, Tian Y et al (2019) Removal of poly-and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies. Environ Sci Water Res Technol 5:198–208

    Article  CAS  Google Scholar 

  • Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    Article  CAS  Google Scholar 

  • Salvador F, Martin-Sanchez N, Sanchez-Hernandez R et al (2015) Regeneration of carbonaceous adsorbents. Part I: thermal regeneration. Microporous Mesoporous Mater 202:259–276

    Article  CAS  Google Scholar 

  • San Miguel G, Lambert SD, Graham NJD (2001) The regeneration of field-spent granular-activated carbons. Water Res 35:2740–2748

    Article  CAS  Google Scholar 

  • Sanders HJ, Keag HF, McCullough HS (1953) Acetophenone. Ind Eng Chem 45:2–14

    Article  CAS  Google Scholar 

  • Sattari SZ, Bouwman AF, Martinez Rodríguez R et al (2016) Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nat Commun 7:1–12

    Article  Google Scholar 

  • Semerád J, Hatasová N, Grasserová A et al (2020) Screening for 32 per-and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic-Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere 261:128018

    Article  Google Scholar 

  • Shahidi S, Wiener J (2012) Antibacterial agents in textile industry. Antimicrob Agents, pp 387–406. https://doi.org/10.5772/46246

  • Shan D, Deng S, Zhao T et al (2016a) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163

    Article  CAS  Google Scholar 

  • Shan R, Zhao C, Lv P et al (2016b) Catalytic applications of calcium rich waste materials for biodiesel: Current state and perspectives. Energy Convers Manag 127:273–283

    Article  CAS  Google Scholar 

  • Sharma G, Kandasubramanian B (2020) Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. J Chem Eng Data 65:396–418

    Article  CAS  Google Scholar 

  • Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 68:381–388

    CAS  Google Scholar 

  • Shen C, Zhao Y, Li W et al (2019) Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem Eng J 372:1019–1027

    Article  CAS  Google Scholar 

  • Silva B, Figueiredo H, Santos VP et al (2011) Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds. J Hazard Mater 192:545–553

    Article  CAS  Google Scholar 

  • Singh T, Singhal R (2013) Reuse of a waste adsorbent poly(AAc/AM/SH)-Cu superabsorbent hydrogel, for the potential phosphate ion removal from waste water: matrix effects, adsorption kinetics, and thermodynamic studies. J Appl Polym Sci 129:3126–3139. https://doi.org/10.1002/app.39018

    Article  CAS  Google Scholar 

  • Singh T, Singhal R (2015) Methyl Orange adsorption by reuse of a waste adsorbent poly(AAc/AM/SH)-MB superabsorbent hydrogel: matrix effects, adsorption thermodynamic and kinetics studies. Desalination Water Treat 53:1942–1956. https://doi.org/10.1080/19443994.2013.859098

    Article  CAS  Google Scholar 

  • Siyal AA, Shamsuddin MR, Low A, Rabat NE (2020) A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manage 254:109797

    Article  CAS  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15:1–20

    Article  Google Scholar 

  • Son H, Kim T, Yoom H-S et al (2020) The adsorption selectivity of short and long per-and polyfluoroalkyl substances (PFASs) from surface water using powder-activated carbon. Water 12:3287

    Article  CAS  Google Scholar 

  • Stojakovic D, Hrenovic J, Mazaj M, Rajic N (2011) On the zinc sorption by the Serbian natural clinoptilolite and the disinfecting ability and phosphate affinity of the exhausted sorbent. J Hazard Mater 185:408–415. https://doi.org/10.1016/j.jhazmat.2010.09.048

    Article  CAS  Google Scholar 

  • Sutton MA, Bleeker A, Howard CM, et al. (2013) Our nutrient world. The challenge to produce more food & energy with less pollution. Cent Ecol Hydrol

  • Tang Z-E, Lim S, Pang Y-L et al (2018) Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew Sustain Energy Rev 92:235–253

    Article  CAS  Google Scholar 

  • Taylor S, Terkildsen M, Stevenson G et al (2021) Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. Sci Total Environ 786:147446

    Article  CAS  Google Scholar 

  • Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64:833–867

    Article  CAS  Google Scholar 

  • Tian G, Wang W, Zong L et al (2016) From spent dye-loaded palygorskite to a multifunctional palygorskite/carbon/Ag nanocomposite. RSC Adv 6:41696–41706

    Article  CAS  Google Scholar 

  • Umejuru EC, Prabakaran E, Pillay K (2020) Coal fly ash coated with carbon hybrid nanocomposite for remediation of cadmium (II) and photocatalytic application of the spent adsorbent for reuse. Results Mater 7:100117

    Article  Google Scholar 

  • Umejuru EC, Prabakaran E, Pillay K (2021) Coal Fly ash decorated with graphene oxide–tungsten oxide nanocomposite for rapid removal of Pb2+ Ions and reuse of spent adsorbent for photocatalytic degradation of acetaminophen. ACS Omega 6:11155–11172

    Article  CAS  Google Scholar 

  • Uriakhil MA, Sidnell T, Fernández ADC et al (2021) Per-and poly-fluoroalkyl substance remediation from soil and sorbents: a review of adsorption behaviour and ultrasonic treatment. Chemosphere 282:131025

    Article  CAS  Google Scholar 

  • US EPA O (2018) EPA Actions to address PFAS. https://www.epa.gov/pfas/epa-actions-address-pfas. Accessed 29 Apr 2022

  • Verbinnen B, Block C, Van Caneghem J, Vandecasteele C (2015) Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Manag 45:407–411

    Article  CAS  Google Scholar 

  • Verma S, Varma RS, Nadagouda MN (2021) Remediation and mineralization processes for per-and polyfluoroalkyl substances (PFAS) in water: a review. Sci Total Environ 794:148987

    Article  CAS  Google Scholar 

  • Vu CT, Wu T (2022) Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater. Crit Rev Environ Sci Technol 52:90–129. https://doi.org/10.1080/10643389.2020.1816125

    Article  CAS  Google Scholar 

  • Wang J, Peng X, Luan Z, Zhao C (2010) Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation. J Hazard Mater 178:1125–1127

    Article  CAS  Google Scholar 

  • Wang S, Ma M, Zhang Q et al (2015) Efficient Phosphate sequestration in waters by the unique hierarchical 3D Artemia egg shell supported nano-Mg(OH) 2 composite and sequenced potential application in slow release fertilizer. ACS Sustain Chem Eng 3:2496–2503. https://doi.org/10.1021/acssuschemeng.5b00594

    Article  CAS  Google Scholar 

  • Wang X, Lü S (2016) Recovery of ammonium and phosphate from wastewater by wheat straw-based amphoteric adsorbent and reusing as a multifunctional slow-release compound fertilizer. ACS Sustainable Chem Eng 4:2068–2079

  • Wang X, Lü S, Gao C et al (2014) Highly efficient adsorption of ammonium onto palygorskite nanocomposite and evaluation of its recovery as a multifunctional slow-release fertilizer. Chem Eng J 252:404–414. https://doi.org/10.1016/j.cej.2014.04.097

    Article  CAS  Google Scholar 

  • Wu Y, Luo H, Wang H et al (2014) Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions. J Colloid Interface Sci 436:90–98

    Article  CAS  Google Scholar 

  • Xu S, Pan D, Wu Y et al (2019) Catalytic conversion of xylose and xylan into furfural over Cr3+/P-SBA-15 catalyst derived from spent adsorbent. Ind Eng Chem Res 58:13013–13020

    Article  CAS  Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  Google Scholar 

  • Yang C, Jiang C, Fu Y, et al. (2021) Fast and effective uptake of mercury (II) from aqueous solution using waste carbon black-supported CuS composites and reutilization of spent adsorbent for photodegradation of rhodamine B. J Mol Liq 345:118251

  • Yao Y, Gao B, Chen J, Yang L (2013) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47:8700–8708. https://doi.org/10.1021/es4012977

    Article  CAS  Google Scholar 

  • Yaseen ZM (2021) An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutions. Chemosphere 277:130126

    Article  CAS  Google Scholar 

  • Zavareh S, Zarei M, Darvishi F, Azizi H (2015) As(III) adsorption and antimicrobial properties of Cu–chitosan/alumina nanocomposite. Chem Eng J 273:610–621. https://doi.org/10.1016/j.cej.2015.03.112

    Article  CAS  Google Scholar 

  • Zhang B, He Y, Huang Y et al (2020) Novel and legacy poly-and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: the emergence of PFAS alternatives in China. Environ Pollut 263:114461

    Article  CAS  Google Scholar 

  • Zhang Y, Li Z, Mahmood IB (2014) Recovery of NH 4 + by corn cob produced biochars and its potential application as soil conditioner. Front Environ Sci Eng 8:825–834. https://doi.org/10.1007/s11783-014-0682-9

    Article  CAS  Google Scholar 

  • Zhao X, Lv L, Pan B et al (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  • Zhao Y, Yang Y, Yang S et al (2013) Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer. J Colloid Interface Sci 393:264–270. https://doi.org/10.1016/j.jcis.2012.10.028

    Article  CAS  Google Scholar 

  • Zhao Z-Q, Chen X, Yang Q et al (2012) Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite. Chem Commun 48:2180–2182

    Article  CAS  Google Scholar 

  • Zhong L-S, Hu J-S, Liang H-P et al (2006) Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Cao X (2014) Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere 117:801–805. https://doi.org/10.1016/j.chemosphere.2014.10.057

    Article  CAS  Google Scholar 

  • Zhu D, He Y, Zhang B et al (2021) Simultaneous removal of multiple heavy metals from wastewater by novel plateau laterite ceramic in batch and fixed-bed studies. J Environ Chem Eng 9:105792

    Article  CAS  Google Scholar 

  • Zhu J, Hou J, Zhang Y et al (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197

    Article  CAS  Google Scholar 

  • Zimdahl RL (2015) Six chemicals that changed agriculture. Academic Press

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Nighojkar contributed to Material preparation, data collection analysis and writing of the article. V. Sangal and F. Dixit contributed to the analysis and reviewing of the article. B Kandasubramanian made substantial contribution to conceptualization, discussion, and reviewed the manuscript before submission.

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Ethics declarations

Ethics approval

The submitted article complies with the ethical guidelines of the journal.

Consent to participate

Not applicable.

Consent for publication

The authors consent to publish the article on acceptance.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Ag-laden saturated adsorbents (SAs) can replace Ag-NPs as antimicrobial agents.

• N, P-laden SAs possess potential to replace energy intensive chemical fertilizers.

• SAs show intriguing results as construction and secondary adsorbent materials.

• SAs as catalysts open economically-viable avenues for clean energy production.

• Assessment of PFAS toxicity of SAs is warranted before their use on a large scale.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 199 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nighojkar, A., Sangal, V.K., Dixit, F. et al. Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS). Environ Sci Pollut Res 29, 78207–78227 (2022). https://doi.org/10.1007/s11356-022-23166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23166-7

Keywords

Navigation