Skip to main content

Advertisement

Log in

Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary–testicular axis dysfunction in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atrazine (ATZ) exposure is associated with reproductive dysfunction in both animals and humans. Myricetin, a flavonoid compound, is well documented for its numerous pharmacological activities. However, the impact of myricetin on the atrazine-mediated dysfunctional hypothalamic-pituitary–testicular axis is not known. This study investigated the role of myricetin on the atrazine-induced alterations in the male reproductive axis in rats orally gavaged with ATZ alone (50 mg/kg) or co-treated with ATZ + myricetin (MYR) at 5, 10, and 20 mg/kg for 30 consecutive days. Myricetin assuaged ATZ-induced reductions in intra-testicular testosterone, serum follicle-stimulating hormone, luteinizing hormone, and testosterone, coupled with decreases in alkaline phosphatase, acid phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase activities. Also, MYR treatment improved epididymal sperm count and motility and decreased sperm defects in ATZ-treated rats. Testicular sperm number, daily sperm production, and sperm viability remained unchanged in all treatment groups. Administration of MYR abated ATZ-mediated depletion in antioxidant status, an increase in myeloperoxidase activity, nitric oxide, hydrogen peroxide, malondialdehyde levels, and reactive oxygen and nitrogen species, as well as the histological lesions in the hypothalamus, epididymis, and testes of treated animals. All in all, MYR mitigated atrazine-mediated functional changes in the reproductive axis via anti-inflammatory and antioxidant mechanisms in atrazine-exposed rats. Dietary intake of MYR could be a worthy chemoprotective approach against reproductive dysfunction related to ATZ exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The original data and materials of the current study are available with the corresponding author and will be made available on justifiable request.

Materials availability

The original data and materials of the current study are available with the corresponding author and will be made available on justifiable request.

References

  • Abarikwu SO, Farombi EO (2015) Atrazine induces apoptosis of SHSY5Y human neuroblastoma cells via the regulation of Bax/Bcl2 ratio and caspase-3-dependent pathway. Pest Biochem Physiol 118:90–98

    Article  CAS  Google Scholar 

  • Abarikwu SO, Farombi EO (2016) Quercetin ameliorates atrazine-induced changes in the testicular function of rats. Toxicol Ind Health 32(7):1278–1285

    Article  CAS  Google Scholar 

  • Abarikwu SO, Adesiyan AC, Oyeloja TO, Oyeyemi MO, Farombi EO (2010) Changes in sperm characteristics and induction of oxidative stress in the testis and epididymis of experimental rats by a herbicide, atrazine. Arch Environ Contam Toxicol 58(3):874–882

    Article  CAS  Google Scholar 

  • Abarikwu SO, Oleribe AL, Mgbudom-Okah CJ, Onuah CL, Chikwendu CS, Onyeike EN (2020). The protective effect of fluted pumpkin seeds against atrazine-induced testicular injury. Drug Chem Toxicol. 1–11

  • Abdel Aziz RL, Abdel-Wahab A, Abo El-Ela FI, Hassan NEY, El-Nahass ES, Ibrahim MA, Khalil AAY (2018) Dose- dependent ameliorative effects of quercetin and l-carnitine against atrazine- induced reproductive toxicity in adult male Albino rats. Biomed Pharmacother 102:855–864

    Article  CAS  Google Scholar 

  • Adedara IA, Abolaji AO, Odion BE, Omoloja AA, Okwudi IJ, Farombi EO (2016a) Redox status of the testes and sperm of rats following exposure to 2,5-hexanedione. Redox Rep 21(6):239–247

    Article  CAS  Google Scholar 

  • Adedara IA, Abolaji AO, Rocha JB, Farombi EO (2016b) Diphenyl diselenide protects against mortality, locomotor deficits and oxidative stress in Drosophila melanogaster model of manganese-induced neurotoxicity. Neurochem Res 41(6):1430–1438

    Article  CAS  Google Scholar 

  • Adedara IA, Owoeye O, Ajayi BO, Awogbindin IO, Rocha JBT, Farombi EO (2018) Diphenyl diselenide abrogates chlorpyrifos-induced hypothalamic-pituitary-testicular axis impairment in rats. Biochem Biophys Res Commun 503(1):171–176

    Article  CAS  Google Scholar 

  • Adedara IA, Okpara ES, Busari EO, Omole O, Owumi SE, Farombi EO (2019) Dietary protocatechuic acid abrogates male reproductive dysfunction in streptozotocin-induced diabetic rats via suppression of oxidative damage, inflammation and caspase-3 activity. Eur J Pharmacol 849:30–42

    Article  CAS  Google Scholar 

  • Adesiyan AC, Oyejola TO, Abarikwu SO, Oyeyemi MO, Farombi EO (2011) Selenium provides protection to the liver but not the reproductive organs in an atrazine-model of experimental toxicity. Exp Toxicol Pathol 63(3):201–207

    Article  CAS  Google Scholar 

  • Bancroft JD, Gamble M. (2008) Theory and practice of histology techniques, 6th edition. Churchill Livingstone Elsevier; Pp 83–134

  • Barzegar A (2016) Antioxidant activity of polyphenolic myricetin in vitro cell-free and cell-based systems. Mole Biol Res Commun 5(2):87

    CAS  Google Scholar 

  • Bautista FEA, Varela Junior AS, Corcini CD, Acosta IB, Caldas SS, Primel EG, Zanette J (2018) The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes. Comp Biochem Physiol C Toxicol Pharmacol 206–207:17–22

    Article  Google Scholar 

  • Berköz M, Yalın S, Özkan-Yılmaz F, Özlüer-Hunt A, Krośniak M, Francik R, Yunusoğlu O, Adıyaman A, Gezici H, Yiğit A, Ünal S, Volkan D, Yıldırım M (2021) Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression. Immunopharmacol Immunotoxicol 43(3):353–369

    Article  Google Scholar 

  • Bertin R, Chen Z, Marin R, Donati M, Feltrinelli A, Montopoli M, Zambon S, Manzato E, Froldi G (2016) Activity of myricetin and other plant-derived polyhydroxyl compounds in human LDL and human vascular endothelial cells against oxidative stress. Biomed Pharmacother 82:472–478

    Article  CAS  Google Scholar 

  • Blazak WF, Trienen KA, Juniewicz PE (1993) Application of testicular sperm head counts in the assessment of male reproductive toxicity. In: Chapin RE, Heindel J (eds) Methods in Toxiciology, vol 3A. Male reproductive toxicology Academic Press, San Diego, pp 86–94

    Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Calis Z, Mogulkoc R, Baltaci AK (2020) The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev Med Chem 20(15):1475–1488

    Article  CAS  Google Scholar 

  • Clairborne A (1995) Catalase activity. In: Greewald AR (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, FL, pp 237–242

    Google Scholar 

  • Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, Emerole GO (2000) Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-a Garcinia kola seed extract. Food Chem Toxicol 38:353–541

    Article  Google Scholar 

  • Farombi EO, Abarikwu SO, Adesiyan AC, Oyejola TO (2013) Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia 45(4):256–265

    Article  CAS  Google Scholar 

  • Flynn K, Wedin MB, Bonventre JA, Dillon-White M, Hines J, Weeks BS, André C, Schreibman MP, Gagné F (2013) Burrowing in the freshwater mussel Elliptio complanata is sexually dimorphic and feminized by low levels of atrazine. J Toxicol Environ Health A 76(20):1168–1181

    Article  CAS  Google Scholar 

  • Gely-Pernot A, Hao C, Becker E, Stuparevic I, Kervarrec C, Chalmel F, Primig M, Je ´gou B, Smagulova F (2015) The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. BMC Genom 16(1):885. https://doi.org/10.6084/m9.figshare.c.3623711

    Article  Google Scholar 

  • Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT (2015) EDC-2: The Endocrine Society’s second Scientific Statement on endocrine-disrupting chemicals. Endocr Rev 36(6):E1–E150

    Article  CAS  Google Scholar 

  • Graceli JB, Dettogni RS, Merlo E, Niño O, da Costa CS, Zanol JF, Ríos Morris EA, Miranda-Alves L, Denicol AC (2020) The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 518:110997. https://doi.org/10.1016/j.mce.2020.110997

    Article  CAS  Google Scholar 

  • Granell S, Gironella M, Bulbena O, Panés J, Mauri M, Aparisi L, Sabater L, Gelpí E, Closa D (2003) Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med 31:525–530

    Article  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skiper PL, Wishnock JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  • Guo JY, Lin J, Huang YQ, Talukder M, Yu L, Li JL (2021) AQP2 as a target of lycopene protects against atrazine-induced renal ionic homeostasis disturbance. Food Funct 12(11):4855–4863

    Article  CAS  Google Scholar 

  • Gupta G, Siddiqui MA, Khan MM, Ajmal M, Ahsan R, Rahaman MA, Ahmad MA, Arshad M, Khushtar M (2020) Current pharmacological trends on myricetin. Drug Res (stuttg) 70(10):448–454

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  Google Scholar 

  • Hao T, Ling Y, Wu M, Shen Y, Gao Y, Liang S, Gao Y, Qian S (2017) Enhanced oral bioavailability of docetaxel in rats combined with myricetin: in situ and in vivo evidences. Eur J Pharm Sci 101:71–79

    Article  CAS  Google Scholar 

  • Hassan SM, Khalaf MM, Sadek SA, Abo-Youssef AM (2017) Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol 55:766–774

    Article  CAS  Google Scholar 

  • Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H, Kestemont P, Kniewald J, Kniewald Z, Langlois VS, Luque EH, McCoy KA, Muñoz-de-Toro M, Oka T, Oliveira CA, Orton F, Ruby S, Suzawa M, Tavera-Mendoza LE, Trudeau VL, Victor-Costa AB, Willingham E (2011) Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol 127(1–2):64–73

    Article  CAS  Google Scholar 

  • He H, Liu Y, You S, Liu J, Xiao H, Tu Z (2019) A review on recent treatment technology for herbicide atrazine in contaminated environment. Int J Environ Res Public Health 16(24):5129. https://doi.org/10.3390/ijerph16245129

    Article  CAS  Google Scholar 

  • Hoskins TD, Boone MD (2018) Atrazine feminizes sex ratio in Blanchard’s cricket frogs (Acris blanchardi) at concentrations as low as 0.1 μg/L. Environ Toxicol Chem 37(2):427–435

    Article  CAS  Google Scholar 

  • Hou Y, Zhang F, Lan J, Sun F, Li J, Li M, Song K, Wu X (2019) Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation. Drug Delivery 26(1):158–167

    Article  CAS  Google Scholar 

  • Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, Samad A (2021) Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. Environ Sci Pollut Res Int 28(18):22742–22757

    Article  CAS  Google Scholar 

  • Jang JH, Lee SH, Jung K, Yoo H, Park G (2020) Inhibitory effects of myricetin on lipopolysaccharide-induced neuroinflammation. Brain Sci 10(1):32. https://doi.org/10.3390/brainsci10010032

    Article  CAS  Google Scholar 

  • Jiang M, Zhu M, Wang L, Yu S (2019) Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 120:109506. https://doi.org/10.1016/j.biopha.2019.109506

    Article  CAS  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  Google Scholar 

  • Kan X, Liu B, Guo W, Wei L, Lin Y, Guo Y, Gong Q, Li Y, Xu D, Cao Y, Huang B, Dong A, Ma H, Fu S, Liu J (2019). Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J Cell Physiol 11. https://doi.org/10.1002/jcp.28288.

  • Kaprara A, Huhtaniemi IT (2018) The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism 86:3–17

    Article  CAS  Google Scholar 

  • Khushtar M (2020) Current pharmacological trends on myricetin. Drug Res (Stuttg) 70(10):448–454

    Article  Google Scholar 

  • Krester DM (2004) Is spermatogenic damage associated with Leydig cell dysfunction? J Clin Endocrinol Metab 89:3158–3160

    Article  Google Scholar 

  • Kumar A, Singh N (2016) Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environ Monit Assess 188(3):142. https://doi.org/10.1007/s10661-016-5144-3

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8(3):469–472

    Article  CAS  Google Scholar 

  • Lai Y, Xi Y, Shao M, Cui X, Wei X, Li L, Wang Y, Fan H (2020) Myricetin reduces the reproductive toxicity of cyclophosphamide in male mice. Wei Sheng Yan Jiu 49:790–794

    Google Scholar 

  • Li C, Lim SC, Kim J, Choi JS (2011) Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Eur J Drug Metab Pharmacokinet 36(3):175–182

    Article  CAS  Google Scholar 

  • Lin J, Zhao HS, Qin L, Li XN, Zhang C, Xia J, Li JL (2018) Atrazine triggers mitochondrial dysfunction and oxidative stress in quail (Coturnix C coturnix) cerebrum via activating xenobiotic-sensing nuclear receptors and modulating cytochrome P450 systems. J Agric Food Chem 66(25):6402–6413

    Article  CAS  Google Scholar 

  • Malymy M, Horecker BL (1966) Alkaline phosphatase. Methods in Enzymology, vol IX. Academy Press, New York, pp 639–642

    Google Scholar 

  • Mao MT, Huang MY (2017) Myricetin attenuates lung inflammation and provides protection against lipopolysaccharide-induced acute lung injury by inhibition of NF-κB pathway in rats. Trop J Pharm Res 16:2585–2593

    Article  CAS  Google Scholar 

  • Marcus SR, Fiumera AC (2016) Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. J Insect Physiol 91:18–25

    Article  Google Scholar 

  • Mendes RA, Almeida SKC, Soares IN, Barboza CA, Freitas RG, Brown A, de Souza GLC (2018) A computational investigation on the antioxidant potential of myricetin 3,40-di-O-α-L-rhamnopyranoside. J Mol Model 24:133

    Article  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  Google Scholar 

  • Oluah NS, Obiezue RNN, Ochulor AJ, Onuoha E (2016) Toxicity and histopathological effect of atrazine (herbicide) on the earthworm Nsukkadrilus mbae under laboratory conditions. Anim Res Int 7(3):1287–1293

    Google Scholar 

  • Omran NE, Salama WM (2016) The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 32(4):656–665

    Article  CAS  Google Scholar 

  • Qie Z, Ning B, Liu M, Bai J, Peng Y, Song N, Zhang Y (2013) Fast detection of atrazine in corn using thermometric biosensors. Analyst 138(17):5151–5156

    Article  CAS  Google Scholar 

  • Ramezani M, Darbandi N, Khodagholi F, Hashemi A (2016) Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res 11(12):1976–1980

    Article  CAS  Google Scholar 

  • Rehman MU, Rather IA (2019) Myricetin abrogates cisplatin-induced oxidative stress, inflammatory response, and goblet cell disintegration in colon of Wistar rats. Plants (basel) 9(1):28. https://doi.org/10.3390/plants9010028

    Article  CAS  Google Scholar 

  • Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants (Basel) 8(5):137. https://doi.org/10.3390/antiox8050137

    Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  Google Scholar 

  • Salihu M, Ajayi BO, Adedara IA, Farombi EO. (2017). 6-Gingerol-rich fraction prevents disruption of histomorphometry and marker enzymes of testicular function in carbendazim-treated rats. Andrologia 49(10). https://doi.org/10.1111/and.12782.

  • Shahid F, Farooqui Z, Khan F (2018) Cisplatin-induced gastrointestinal toxicity: an update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 827:49–57

    Article  CAS  Google Scholar 

  • Singh M, Sandhir R, Kiran R (2011) Effects on antioxidant status of liver following atrazine exposure and its attenuation by vitamin E. Exp Toxicol Pathol 63(3):269–276

    Article  CAS  Google Scholar 

  • Solomon KR, Giesy JP, LaPoint TW, Giddings JM, Richards RP (2013a) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 32(1):10–11

    Article  CAS  Google Scholar 

  • Solomon RDJ, Kumar A, Santhi VS (2013b) Atrazine biodegradation efficiency metabolite detection and trzD gene expression by enrichment bacterial cultures from agricultural soil. J Zhejiang Univ Sci B 14(12):1162–1172

    Article  CAS  Google Scholar 

  • Song X, Tan L, Wang M, Ren C, Guo C, Yang B, Ren Y, Cao Z, Li Y, Pei J (2021) Myricetin: a review of the most recent research. Biomed Pharmacother 134:111017. https://doi.org/10.1016/j.biopha.2020.111017

    Article  CAS  Google Scholar 

  • Vanha-Perttula T, Nikkanen V (1973) Acid phosphatases of the rat testis in experimental conditions. Acta Endocrinol 72:376–390

    CAS  Google Scholar 

  • Vassault A (1983) Lactate dehydrogenase. UV-method with pyruvate and NADH. In: Bergmeyer HU(ed) Methods of enzymatic analysis (3rd ed). Volume III. New York: Plenum 118–125

  • Victor-Costa AB, Bandeira SMC, Oliveira AG, Mahecha GAB, Oliveira CA (2010) Changes in testicular morphology and steroidogenesis in adult rats exposed to atrazine. Reprod Toxicol 29(3):323–331

    Article  CAS  Google Scholar 

  • Vogel A, Jocque H, Sirot LK, Fiumera AC (2015) Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster. J Insect Physiol 72:14–21

    Article  CAS  Google Scholar 

  • Wang L, Wu H, Yang F, Dong W (2019) The protective effects of myricetin against cardiovascular disease. J Nutr Sci Vitaminol (tokyo) 65(6):470–476

    Article  CAS  Google Scholar 

  • Wells ME, Awa OA (1970) New technique for assessing acrosomal characteristics of spermatozoa. J Diary Sci 53:227

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1999) Laboratory manual for the examinationof human semen and sperm-cervical mucus interaction. 4th edn.New York: Cambridge University Press 76:4–33

  • Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  CAS  Google Scholar 

  • Xie Y, Wang Y, Xiang W, Wang Q, Cao Y (2020) Molecular mechanisms of the action of myricetin in cancer. Mini Rev Med Chem 20(2):123–133

    Article  CAS  Google Scholar 

  • Xu C, Liu YL, Gao ZW, Jiang HM, Xu CJ, Li X (2020) Pharmacological activities of myricetin and its glycosides. Zhongguo Zhong Yao Za Zhi 45(15):3575–3583

    Google Scholar 

  • Yang Y, Xu X, Liu Q, Huang H, Huang X, Lv H (2020) Myricetin prevents cataract formation by inhibiting the apoptotic cell death mediated cataractogenesis. Med Sci Monit 26:e922519. https://doi.org/10.12659/MSM.922519

    Article  CAS  Google Scholar 

  • Zemjanis R (1970) Collection and evaluation of semen. In: Zemjanis R (ed) Diagnostic and therapeutic technique in animal reproduction, 2nd edn. William and Wilkins Company, Waverly Press Inc, Baltimore, Maryland, USA, pp 139–153

    Google Scholar 

  • Zhang MJ, Su H, Yan JY, Li N, Song ZY, Wang HJ, Huo LG, Wang F, Ji WS, Qu XJ, Qu MH (2018a) Chemopreventive effect of myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomed Pharmacother 97:1131–1137

    Article  CAS  Google Scholar 

  • Zhang N, Feng H, Liao HH, Chen S, Yang Z, Deng W, Tang QZ (2018b) Myricetin attenuated LPS induced cardiac injury in vivo and in vitro. Phytother Res 32(3):459–470

    Article  CAS  Google Scholar 

  • Zhang C, Qin L, Dou DC, Li XN, Ge J, Li JL (2018c) Atrazine induced oxidative stress and mitochondrial dysfunction in quail (Coturnix C. coturnix) kidney via modulating Nrf2 signaling pathway. Chemosphere 212:974–982

    Article  CAS  Google Scholar 

  • Zhang C, Li H, Qin L, Ge J, Qi Z, Talukder M, Li YH, Li JL (2019) Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix). Environ Pollut 253:889–898

    Article  CAS  Google Scholar 

  • Zhao X, Wang L, Ma F, Bai S, Yang J, Qi S (2017) Pseudomonas sp, ZXY-1 a newly isolated and highly efficient atrazine-degrading bacterium and optimization of biodegradation using response surface methodology. J Environ Sci 54:52–159

    Article  Google Scholar 

  • Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L (2020) Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther 20(1):209. https://doi.org/10.1186/s12906-020-02965-w

    Article  CAS  Google Scholar 

Download references

Funding

This research was done without a specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Cynthia N. Ikeji: conceptualization; methodology; data curation; writing—original draft preparation. Isaac A. Adedara: supervision; validation; writing—review and editing. Ebenezer O. Farombi: cconceptualization; validation; writing—review and editing.

Corresponding author

Correspondence to Ebenezer O. Farombi.

Ethics declarations

Ethics approval

The current study complies with ethical standards. The experimental protocols were carried out after approval and in accordance with the guidelines of the University of Ibadan Ethical Committee, with approval number UI-ACUREC/031–0421/28.

Consent to participate

Not applicable.

Consent for publication

The content of this manuscript is original. It does not contain data or pictures of any person. Hence, no consent from any person or organization is required to publish it.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeji, C.N., Adedara, I.A. & Farombi, E.O. Dietary myricetin assuages atrazine-mediated hypothalamic-pituitary–testicular axis dysfunction in rats. Environ Sci Pollut Res 30, 15655–15670 (2023). https://doi.org/10.1007/s11356-022-23033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23033-5

Keywords

Navigation