Skip to main content

Advertisement

Log in

Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT)

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquaculture is one of the fastest-growing industries in the world, and its prominent role has been proven in supplying food for the growing world population. The expected growth of aquaculture requires the development of responsible and sustainable approaches, technologies, culture systems, and practices. The integrated multitrophic aquaculture (IMTA) system has been developed over the past decades. This system is based on the use of all food levels for simultaneous production of some aquaculturally species in a way that contributes to environmental sustainability (biocontrol), economic stability (product diversity and risk reduction), and social acceptance (better management operations). In IMTA, selecting suitable culture species and considering their appropriate population size is absolutely necessary to achieve an optimal biological and chemical process, improving the ecosystem health and sustainability of the industry. Biofloc technology (BFT) is closely related to the IMTA system, where the IMTA potential can be used to control suspended solids in aquaculture systems with limited water exchange. This study reviews the significance of IMTA systems, potential target species for cultivation, the relationship between BFT and IMTA, total suspended solids control, the economics of IMTA farming, and the recent findings in these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no data.

References

  • Abreu AH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land based pilot scale system. Aquaculture 312:77–87

    Google Scholar 

  • Abreu MH, Pereira R, Sassi JF (2014) Marine algae and the global food industry. In: Pereira L, Magalhaes Neto J (eds) marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton, FL, pp 300–319. https://doi.org/10.1201/b17540

    Chapter  Google Scholar 

  • Abreu MH, Varela DA, Henrıquez L, Villarroel A, Yarish C, Sousa-Pinto I et al (2009) Traditional vs. integrated multi trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293:211–220

    Google Scholar 

  • Alexander KA, Hughes AD (2017) A problem shared: technology transfer and development in European integrated multitrophic aquaculture (IMTA). Aquaculture 473:13–19

    Google Scholar 

  • Alsufyani T, Weiss A, Wichard T (2017) Time course exo-metabolomic profiling in the green marine macroalga Ulva (Chlorophyta) for identification of growth phase-dependent biomarkers. Mar Drugs 15:14. https://doi.org/10.3390/md15010014

    Article  CAS  Google Scholar 

  • Avnimelech Y (2009) Biofloc technology: a practical guide book. World Aquaculture Society, Baton Rouge, pp 182

  • Azhar MH, Suciyono S, Budi DS, Ulkhaq MF, Anugrahwati M, Ekasari J (2020) Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon–nitrogen ratios. Aquacult Int 28:1293–1304

    CAS  Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multitrophic aquaculture (IMTA) in marine temperate waters. Integrated mariculture: a global review. FAO Fish Aquac Tech Paper 529:7–46

    Google Scholar 

  • Benner R (2002) Chemical composition and reactivity. In: Hansell D, Carlson C (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, CA, pp 59–90

    Google Scholar 

  • Bergamo GCA, Olier BS, de Sousa OM, Kuhnen VV, Pessoa MFG, Sanches EG (2021) Economic feasibility of mussel (Perna perna) and cobia (Rachycentron canadum) produced in a multitrophic system. Aquacult Int 29:1909–1924

    Google Scholar 

  • Beyer CP, Gomez S, Lara G, Monsalve JP, Orellana J, Hurtado CF (2021) Sarcocornia neei: A novel halophyte species for bioremediation of marine aquaculture wastewater and production diversification in integrated systems. Aquaculture 543:736971

    CAS  Google Scholar 

  • Bischoff AA, Fink P, Waller U (2009) The fatty acid composition of Nereis diversicolor cultured in an integrated recirculated system: possible implications for aquaculture. Aquaculture 296:271–276

    CAS  Google Scholar 

  • Biswas G, Kumar P, Ghoshal TK, Kailasam M, De D, Bera A, Mandal B, Sukumaran K, Vijayan KK (2020) Integrated multitrophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. Aquaculture 516:734626

    CAS  Google Scholar 

  • Borges BAA, Rocha JL, Pinto PHO, Zacheu T, Chede AC, Magnotti CCF, Cerqueira VR, Arana LAV (2020) Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: zootechnical performance, sludge generation, and Vibrio sp. reduction. Aquaculture 524:735234

    Google Scholar 

  • Boyd CE, D’Abramo LR, Glencross BD, Huyben DC, Juarez LM, Lockwood GS, McNevin AA, Tacon AGJ, Teletchea F, Tomasso JR, Tucke CS, Valenti WC (2020) Achieving sustainable aquaculture: historical and current perspectives and future needs and challenges. J World Aquac Soc 51(3):578–633

    Google Scholar 

  • Brito LO, Chagas AM, Silva EP, Soares RB, Severi W, Gálvez AO (2014) Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquacult Res 47(3):940–950

    Google Scholar 

  • Brown N, Eddy S, Plaud S (2011) Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture 322–323:177–183

    Google Scholar 

  • Buck BH, Troell MF, Krause G, Angel DL, Grote B, Chopin T (2018) State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front Mar Sci 5:165. https://doi.org/10.3389/fmars.2018.00165

    Article  Google Scholar 

  • Bureau DP, Hua K (2010) Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquac Res 41(5):777–792. https://doi.org/10.1111/j.1365-2109.2009.02431.x

    Article  Google Scholar 

  • Califano G, Kwantes M, Abreu MH, Costa R, Wichard T (2020) Cultivating the macroalgal holobiont: effects of integrated multitrophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Front Mar Sci 7:52. https://doi.org/10.3389/fmars.2020.00052

    Article  Google Scholar 

  • Camelo-Guarín S, Molinet C, Soto D (2021) Recommendations for implementing integrated multitrophic aquaculture in commercial farms at the landscape scale in southern Chile. Aquaculture 544:737116

    Google Scholar 

  • Carneiro MA, de Amaral Resende JF, de Jesus Oliveira SR, Fernandes F, de Oliveira Borburema HDDS, Barbosa-Silva MS, Ferreira ABG, Marinho-Soriano E (2021) Performance of the agarophyte Gracilariopsis tenuifrons in a multitrophic aquaculture system with Litopenaeus vannamei using water recirculation. J Appl Phycol 33:481–490

    CAS  Google Scholar 

  • Carras MA, Knowler D, Pearce CM, Hamer A, Chopin T, Weaire T (2019) A discounted cash-flow analysis of salmon monoculture and integrated multi-trophic aquaculture in eastern Canada. Aquac Econ Manag 24(1):43–63

    Google Scholar 

  • Carvalho D, Reyes P, Williner V, Mora MC, Viozzi MF, Bonis CJ, Collins PA (2020) Growth, survival, body composition and amino acid profile of Macrobrachium borellii against the limitation of feeds with different C: N ratios with comments about application in integrated multitrophic aquaculture. Aquac Res 51(10):3947–3958

    CAS  Google Scholar 

  • Chang ZQ, Neori A, He YY, Li JT, Qiao L, Preston SI, Liu P, Li J (2020) Development and current state of seawater shrimp farming, with an emphasis on integrated multitrophic pond aquaculture farms, in China – a review. Rev Aquac 12(4):2544–2558

    Google Scholar 

  • Chary K, Aubin J, Sadoul B, Fiandrino A, Coves D, Callier MD (2020) Integrated multitrophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): assessing bioremediation and life cycle impacts. Aquaculture 516:734621

    CAS  Google Scholar 

  • Chopin T (2017) Challenges of moving integrated multitrophic aquaculture along the R&D and commercialization continuum in the western world. J Ocean Technol 12(2):34–47

    Google Scholar 

  • Chopin T (2006) Integrated multitrophic aquaculture. What it is and why you should care... and don't confuse it with polyculture. Capamara Communications Inc., Northern Aquaculture, pp 1–2

  • Chopin T (2013) Aquaculture, integrated multi-trophic (IMTA). In: Christou P, Savin R, Costa-Pierce BA, Misztal I, Whitelaw CBA (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_173

    Chapter  Google Scholar 

  • Chopin T (2015) Marine aquaculture in Canada: well-established monocultures of finfish and shellfish and an emerging integrated multi-862 trophic aquaculture (IMTA) approach including seaweeds, other invertebrates, and microbial communities. Fisheries 40(1):28–31

    Google Scholar 

  • Chopin T (2018) To enable integrated multitrophic aquaculture (IMTA) and the seaweed sector to develop in Canada, regulatory issues will need to be seriously addressed. Bull Aquac Assoc Can 2017–1:41–44

    Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Google Scholar 

  • Chopin T, Cooper JA, Reid G, Cross S, Moore C (2012) Open-water integrated multitrophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev Aquac 4(4):209–220

    Google Scholar 

  • Chopin T, Troell M, Reid GK, Knowler D, Robinson SMC, Neori A, Buschmann AH, Pang S (2010) Integrated multi-trophic aquaculture, part 2. Global Seafood Alliance’s, https://www.globalseafood.org/advocate/integrated-multi-trophic-aquaculture-part-2/. Accessed 1 Sep 2010

  • Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (2000) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 12:99

    Google Scholar 

  • Correia M, Azevedo IC, Peres H, Magalhães R, Oliva-Teles A, Almeida CMR, Guimarães L (2020) Integrated multitrophic aquaculture: a laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products. Front Mar Sci 7:156

    Google Scholar 

  • Costa LCD, Poersch LHD, Abreu C (2021) Biofloc removal by the oyster Crassostrea gasar as a candidate species to an integrated multitrophic aquaculture (IMTA) system with the marine shrimp Litopenaeus vannamei. Aquaculture 540:736731

    CAS  Google Scholar 

  • Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: BENEFICIAL effects and future challenges. Aquaculture 356–357:351–356

    Google Scholar 

  • Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J (2016) Role of deposit feeders in integrated multitrophic aquaculture — A model analysis. Aquaculture 453:54–66

    Google Scholar 

  • Custódio M, Villasante S, Calado R, Lillebø AI (2021) Testing the hydroponic performance of the edible halophyte Halimione portulacoides, a potential extractive species for coastal Integrated Multitrophic Aquaculture. Sci Total Environ 766:144378

    Google Scholar 

  • Cutajar K, Falconer L, Massa-Gallucci A, Cox RE, Schenke L, Bardócz T, Sharman A, Deguara S, Telfer TC (2022) Culturing the sea cucumber Holothuria poli in open-water integrated multitrophic aquaculture at a coastal Mediterranean fish farm. Aquaculture 550:737881

    CAS  Google Scholar 

  • Das RR, Sarkar S, Saranya C, Esakkiraj P, Aravind R, Saraswathy R, Rekha PN, Muralidhar M, Panigrahi A (2022) Co-culture of Indian white shrimp, Penaeus indicus and seaweed, Gracilaria tenuistipitata in amended biofloc and recirculating aquaculture system (RAS). Aquaculture 548(part 1):737432

    Google Scholar 

  • David FS, Proenc DC, Valenti WC (2017) Phosphorus budget in integrated multitrophic aquaculture systems with Nile tilapia (Oreochromis niloticus) and Amazon River prawn (Macrobrachium amazonicum). J World Aquaculture Soc 48:402–414

    CAS  Google Scholar 

  • de Goeij JM, Lesser MP, Pawlik JR (2017) Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds) Climate change, ocean acidification and sponges. Springer Int, Cham, Switzerland, pp 373–410

    Google Scholar 

  • Edwards P (2015) Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447(C):2–14

    Google Scholar 

  • Ekasari J, Angela D, Waluyo SH, Bachtiar T, Surawidjaja EH, De Schryver P (2014) The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426:105–111

    Google Scholar 

  • El-Sayed AM (2021) Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev Aquac 13(1):676–705

    Google Scholar 

  • Estim A (2015) Integrated multitrophic aquaculture, In: Mustafa S, Shapawi R. (eds) Book: aquaculture ecosystems: adaptability and sustainability.  https://doi.org/10.1002/9781118778531.ch6

  • Fang J, Jiang Z, Jansen HM, Hu F, Fang J, Liu Y, Gao Y, Du M (2017) Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, PR China. J Ocean Univ China, 1–11. https://doi.org/10.1007/s11802-017-3256-1

  • FAO (2020) The State of World Fisheries and Aquaculture 2020, Nature and Resources. FAO. https://doi.org/10.4060/ca9229en

  • Felaco L, Olvera-Novoa MA, Robledo D (2020) Multitrophic integration of the tropical red seaweed Solieria filiformis with sea cucumbers and fish. Aquaculture 527:735475

    CAS  Google Scholar 

  • Fonseca T, David FS, Ribeiro FAS, Wainberg AA, Valenti WC (2015) Technical and economic feasibility of integrating seahorse culture in shrimp/oyster farms. Aquac Res 2015:1–10

    Google Scholar 

  • Franchini AC, Costa GA, Pereira SA, Valenti WC, Moraes- Valenti P (2020) Improving production and diet assimilation in fish-prawn integrated aquaculture, using iliophagus species. Aquaculture 521:735048

    Google Scholar 

  • Galasso HL, Lefebvre S, Aliaume C, Sadoul B, Callier MD (2020) Using the Dynamic Energy Budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multitrophic aquaculture system. Ecol Model 437:109296

    CAS  Google Scholar 

  • Gao X, Ke C, Zhang M, Li X, Wu F, Liu Y (2019) N and P budgets of Haliotis discus hanai, Apostichopus japonicas, and Sebastes schlegeli in a polyculture system. Aquac Res 50:2398–2409

    CAS  Google Scholar 

  • Gaona CAP, da Paz SF, Furtado PS, Poersch LH, Wasielesky W (2016) Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac Eng 72–73:65–69

    Google Scholar 

  • Gaona CAP, de Almeida MS, Viau V, Poersch LH, Wasielesky W (2017) Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquac Res 48:1070–1079

    CAS  Google Scholar 

  • Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac 12:54–73

    Google Scholar 

  • Ghaderiardakani F, Califano G, Mohr JF, Abreu MH, Coates JC, Wichard T (2019) Analysis of algal growth- and morphogenesis-promoting factors in an integrated multitrophic aquaculture system for farming the green seaweed Ulva spp. Aquac Environ Interact 11:375–391

    Google Scholar 

  • Ghosh S, Ranjan R, Megarajan S, Pattnaik P, Dash B, Edward L (2016) Mixed culture of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) and flathead grey mullet Mugil cephalus (Linnaeus, 1758) in floating cages. Indian J Fish 63:63–69

    Google Scholar 

  • Giangrande A, Pierri C, Arduini D, Borghese J, Licciano M, Trani R, Corriero G, Basile G, Cecere E, Petrocelli A, Stabili L, Longo C (2020) An innovative IMTA system: polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). J Mar Sci Eng 8:733. https://doi.org/10.3390/jmse8100733

    Article  Google Scholar 

  • Gokalp M, Mes D, Nederlof M, Zhao H, de Goeij JM, Osinga R (2021) the potential roles of sponges in integrated mariculture. Rev Aquac 13:1159–1171

    Google Scholar 

  • Gokalp M, Wijgerde T, Sara A, de Goeij JM, Osinga R (2019) Development of an integrated mariculture for the collagen rich sponge Chondrosia reniformis. Mar Drugs 17:29–43

    Google Scholar 

  • Granada L, Lopes S, Novais SC, Lemos MF (2018) Modelling integrated multitrophic aquaculture: optimizing a three trophic level system. Aquaculture 495:90–97

    Google Scholar 

  • Granada L, Sousa N, Lopes S, Lemos MFL (2016) Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? - a review. Rev Aquac 8(3):283–300

    Google Scholar 

  • Grosso L, Fianchini A, Morroni L, Scardi M, Cataudella S, Rakaj A (2021) Integrated multitrophic aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534:736268

    CAS  Google Scholar 

  • Guerra-García JM, Hachero-Cruzado I, González-Romero P, Jiménez-Prada P, Cassell C, Ros M (2016) Towards integrated multi-trophic aquaculture: lessons from Caprellids (Crustacea: Amphipoda). PLoS One 11(4):e0154776. https://doi.org/10.1371/journal.pone.0154776

    Article  CAS  Google Scholar 

  • Handa A, Ranheim A, Olsen AJ, Altin D, Reitan KI, Olsen Y et al (2012) Incorporation of salmon fish feed and feces components in mussels (Mytilus edulis): implications for integrated multitrophic aquaculture in cool-temperate North Atlantic waters. Aquaculture 370–371:40–53

    Google Scholar 

  • Hargrave MS, Nylund GM, Enge S, Pavia H (2022) Co-cultivation with blue mussels increases yield and biomass quality of kelp. Aquaculture 550:737832

    CAS  Google Scholar 

  • Hoang MN, Nguyen PN, Bossier P (2020) Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil Cephalus. Aquaculture 515:734610

    CAS  Google Scholar 

  • Hoang MN, Nguyen PN, Le DVB, Nguyen DV, Bossier P (2018) Effects of stocking density of gray mullet Mugil cephalus on water quality, growth performance, nutrient conversion rate, and microbial community structure in the white shrimp Litopenaeus vannamei integrated system. Aquaculture 496:123–133

    Google Scholar 

  • Holanda M, Santana G, Furtado P, Rodrigues RV, Cerqueira VR, Sampaio LA, Wasielesky W Jr, Poersch LH (2020) Evidence of total suspended solids control by Mugil liza reared in an integrated system with Pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquac Rep 18:100479

    Google Scholar 

  • Hu F, Sun M, Fang J, Wang G, Li L, Gao F, Jian Y, Wang X, Liu G, Zou Y, Guo W (2021) Carbon and nitrogen budget in fish-polychaete integrated aquaculture system. J Ocean Limnol 39:1151–1159

    CAS  Google Scholar 

  • Hussenot J, Lefebvre S, Brossard N (1998) Open-air treatment of wastewater from land-based marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquat Living Resour 11(04):297–304. https://doi.org/10.1016/S0990-7440(98)80015-6

    Article  Google Scholar 

  • Jaeger C, Aubin J (2018) Ecological intensification in multitrophic aquaculture ponds: an experimental approach. Aquat Living Resour 31:36. https://doi.org/10.1051/alr/2018021

    Article  CAS  Google Scholar 

  • Jaeger C, Roucaute M, Nahon S (2021) Effects of a lagoon on performances of a freshwater fishpond in a multitrophic aquaculture system. Aquat Living Resour 34(4):1–12

    Google Scholar 

  • Jerónimo D, Lillebø AI, Santos A, Cremades J, Calado R (2020) Performance of polychaete assisted sand filters under contrasting nutrient loads in an integrated multitrophic aquaculture (IMTA) system. Sci Rep 10:20871

    Google Scholar 

  • Kang YH, Kim S, Choi SK, Lee HJ, Chung IK, Park SR (2021) A comparison of the bioremediation potential of five seaweed species in an integrated fish-seaweed aquaculture system: implication for a multi-species seaweed culture. Rev Aquac 13:353–364

    Google Scholar 

  • Khanjani MH, Alizadeh M, Mohammadi M, Sarsangi Aliabad H (2021a) Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran J Fish Sci 20(2):490–513

    Google Scholar 

  • Khanjani MH, Alizadeh M, Mohammadi M, Sarsangi Aliabad H (2021b) The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann Anim Sci 21(4):1435–1454

    CAS  Google Scholar 

  • Khanjani MH, Eslami J, Ghaedi G, Sourinejad I (2022b) The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann Anim Sci. https://doi.org/10.2478/aoas-2022-0027

    Article  Google Scholar 

  • Khanjani MH, Sharifinia M (2021) Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: the effect of different light levels. Aquaculture 542:736912

    CAS  Google Scholar 

  • Khanjani MH, Sharifinia M (2022a) Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquacult Int 30:383–397

    CAS  Google Scholar 

  • Khanjani MH, Sharifinia M (2022b) Biofloc as a food source for Banana shrimp (Fenneropenaeus merguiensis) postlarvae. North Am J Aquac. https://doi.org/10.1002/naaq.10261

    Article  Google Scholar 

  • Khanjani MH, Sharifinia M, Hajirezaee S (2022b) Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture 552:738021

    CAS  Google Scholar 

  • Khanjani MH, Torfi Mozanzade M, Fóes GK (2022c) Aquamimicry system: a sutiable strategy for shrimp aquaculture. Ann Anim Sci. https://doi.org/10.2478/aoas-2022-0044

    Article  Google Scholar 

  • Khanjani MH, Sharifinia M (2020) Biofloc technology as a promising tool to improve aquaculture production. Rev Aquac 12(3):1836–1850

    Google Scholar 

  • Kleitou P, Kletou D, David J (2018) Is Europe ready for integrated multitrophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture 490:136–148

    Google Scholar 

  • Knowler D, Chopin T, Martınez-Espineira R, Neori A, Nobre A, Noce A, Reid G (2020) The economics of integrated multitrophic aquaculture: where are we now and where do we need to go? Rev Aquac 12(3):1579–1594

    Google Scholar 

  • Lander TR, Robinson SMC, MacDonald BA, Martin JD (2013) Characterization of the suspended organic particles released from salmon farms and their potential as a food supply for the suspension feeder, Mytilus edulis in integrated multitrophic aquaculture (IMTA) systems. Aquaculture 406–407:160–171

    Google Scholar 

  • Largo DB, Diola AG, Marababol MS (2016) Development of an integrated multitrophic aquaculture (IMTA) system for tropical marine species in southern cebu, Central Philippines. Aquaculture Reports 3:67–76

    Google Scholar 

  • Ledda FD, Pronzato R, Manconi R (2014) Mariculture for bacterial and organic waste removal: a field study of sponge filtering activity in experimental farming. Aquac Res 45:1389–140

    Google Scholar 

  • Legarda EC, da Silva D, Miranda CS, Pereira PKM, Martins MA, Machado C, de Lorenzo MA, Hayashi L, Vieira FN (2021a) Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture 534:736265

    CAS  Google Scholar 

  • Legarda EC, Poli MA, Martins MA, Pereira SA, Martins ML, Machado C, de Lorenzo MA, Vieira FN (2019) Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture 512:734308

    Google Scholar 

  • Legarda EC, Viana MT, Zaragoza OBDR, Skrzynska AK, Braga A, de Lorenzo MA, Vieira FN (2021b) Effects on fatty acids profile of Seriola dorsalis muscle tissue fed diets supplemented with different levels of Ulva fasciata from an Integration Multi-Trophic Aquaculture system. Aquaculture 535:736414

    CAS  Google Scholar 

  • Legat JFA, Puchnick-Legat A, Fogaça FHS, Tureck CR, Suhnel S, Melo CMR (2017) Growth and survival of bottom oyster Crassostrea gasar cultured in the northeast and south of Brazil. B Inst Pesca Sao Paulo 43(2):172–184

    Google Scholar 

  • Lesser M (2006) Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol 328:277–288

    Google Scholar 

  • Leston S, Nunes M, Viegas I, Lemos MFL, Freitas A, Barbosa J et al (2011) The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere 82(7):1010–1016

    CAS  Google Scholar 

  • Lima PCM, Silva AEM, Silva DA, Silva SMBC, Brito LO, OliveraGálvez A (2021) Effect of stocking density of Crassostrea sp. in a multitrophic biofloc system with Litopenaeus vannamei in nursery. Aquaculture 530:735913

    CAS  Google Scholar 

  • Liu L, Hu Z, Dai X, Avnimelech Y (2014) Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture 418:79–86

    Google Scholar 

  • Lohroff TJ, Gillette PR, Close HG, Benetti DD, Stieglitz JD (2021) Evaluating the potential bioextractive capacity of South Florida native macroalgae Agardhiella subulata for use in integrated multitrophic aquaculture (IMTA). Aquaculture 544:737091

    Google Scholar 

  • Longo C, Cardone F, Corriero G (2010) The co-occurrence of the demosponge Hymeniacidon perlevis and the edible mussel Mytilus galloprovincialis as a new tool for bacterial load mitigation in aquaculture. Environ Sci Pollut Res 23:3736–3746

    Google Scholar 

  • MacDonald BA, Robinson SMC, Barrington KA (2011) Feeding activity of mussels (Mytilus edulis) held in the field at an interated multitrophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory. Aquaculture 314:244–251

    Google Scholar 

  • MacTavish T, Stenton-Dozey J, Vopel K, Savage C (2012) Depositfeeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One 7(11):e50031. https://doi.org/10.1371/journal.pone.0050031

    Article  CAS  Google Scholar 

  • Magondu EW, Fulanda BM, Munguti JM, Mlewa CM (2021) Toward integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. J World Aquaculture Soc. https://doi.org/10.1111/jwas.12861

    Article  Google Scholar 

  • Marinho-Soriano E, Azevedo CAA, Trigueiro TG, Pereira DC, Carneiro MAA, Camara MR (2011) Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegradation 65:253–257

    CAS  Google Scholar 

  • Marinho-Soriano E, Nunes SO, Carneiro MAA, Pereira DC (2009) Nutrients removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenerg 33:327–331

    CAS  Google Scholar 

  • Martínez-Espineira R, Chopin T, Robinson S, Noce A, Knowler D, Yip W (2015) Estimating the biomitigation benefits of integrated multitrophic aquaculture: a contingent behavior analysis. Aquaculture 437:182–194

    Google Scholar 

  • Mildenberger J, Stangeland JK, Rebours C (2022) Antioxidative activities, phenolic compounds and marine food allergens in the macroalgae Saccharina latissima produced in integrated multitrophic aquaculture systems. Aquaculture 546:737386

    CAS  Google Scholar 

  • Mugwanya M, Dawood MAO, Kimera F, Sewilam H (2021) Biofloc systems for sustainable production of economically important aquatic species: a review. Sustainability 13:7255

    Google Scholar 

  • Muller WEG, Wang X, Burghard Z, Bill J, Krasko A, Boreiko A et al (2009) Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. J Struct Biol 168:548–561

    Google Scholar 

  • Nath K, Munilkumar S, Patel AB, Kamilya D, Pandey PK, Banerjee Sawant P (2021) Lamellidens and Wolffia canopy improves growth, feed utilization and welfare of Labeo rohita (Hamilton, 1822) in integrated multitrophic freshwater aquaculture system. Aquaculture 534:736207

    CAS  Google Scholar 

  • Nederlof MAJ, Fang J, Dahlgren TG, Rastrick SPS, Smaal AC, Strand Ø, Sveier H, Verdegem MCJ, Jansen HM (2020) Application of polychaetes in (de)coupled integrated aquaculture: an approach for fish waste bioremediation. Aquac Environ Interact 12:385–399

    Google Scholar 

  • Nederlof MAJ, Verdegem MCJ, Smaal AC, Jansen HM (2022) Nutrient retention efficiencies in integrated multitrophic aquaculture. Rev Aquac 14(3):1194–1212

    Google Scholar 

  • Nelson EJ, MacDonald BA, Robinson SMC (2012) The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive integrated multitrophic aquaculture (IMTA). Aquaculture 370–371:19–25

    Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Google Scholar 

  • Neori A, Nobre AM (2012) Relationship between trophic level and economics in aquaculture. Aquac Econ Manag 16(1):40–67

    Google Scholar 

  • Neori A, Troell M, Chopin T, Yarish C, Critchley A (2007) Environment : science and policy for sustainable development the need for a balanced ecosystem approach to blue revolution aquaculture. Environment 49:37–41. https://doi.org/10.3200/ENVT.49.3.36-43

    Article  Google Scholar 

  • Nobre A, Robertson-Andersson DV, Neori A, Sankar K (2010) Ecological-economic assessment of aquaculture options: comparison between abalone monoculture and integrated multitrophic aquaculture of abalone and seaweeds. Aquaculture 306:116–126

    Google Scholar 

  • O’Neill EA, Morse AP, Rowan NJ (2022) Effects of climate and environmental variance on the performance of a novel peatland-based integrated multitrophic aquaculture (IMTA) system: Implications and opportunities for advancing research and disruptive innovation post COVID-19 era. Sci Total Environ 819:153073

    CAS  Google Scholar 

  • Paez-Osuna F (2001) The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environ Manage 28(1):131–140

    CAS  Google Scholar 

  • Palmer PJ (2010) Polychaete-assisted sand filters. Aquaculture 306:369–377

    Google Scholar 

  • Paolacci S, Stejskal V, Jansen MAK (2021) Estimation of the potential of Lemna minor for effluent remediation in integrated multitrophic aquaculture using newly developed synthetic aquaculture wastewater. Aquacult Int 29:2101–2118

    CAS  Google Scholar 

  • Park MS, Kim JK, Shin S, Min BH, Samanta P (2021) Trophic fractionation in an integrated multitrophic aquaculture off Tongyoung Coast: a stable isotope approach. Aquaculture 536:736454

    CAS  Google Scholar 

  • Perdikaris C, Chrysafi A, Ganias K (2016) Environmentally friendly practices and perceptions in aquaculture: a sectoral case-study from a Mediterranean based industry. Rev Fish Sci Aquac 24:113–125

    Google Scholar 

  • Pietrak MR, Molloy SD, Bouchard DA, Singer JT, Bricknell I (2012) Potential role of Mytilus edulis in modulating the infectious pressure of Vibrio anguillarum 02b on an integrated multitrophic aquaculture farm. Aquaculture 326–329:36–39

    Google Scholar 

  • Pinheiro I, Carneiro RFS, do Nascimento Vieira F, Gonzaga LV, Fett R, de Oliveira Costa AC, Magallon-Barajas FJ, Seiffert WQ (2020) Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities. Aquaculture 519:734918

    Google Scholar 

  • Poli MA, Legarda EC, de Lorenzo MA, Pinheiro I, Martins MA, Seiffert WQ, do Nascimento Vieira F (2019) Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture 511:734274

    Google Scholar 

  • Poli MA, Martins MA, Pereira SA, Jesus GFA, Martins ML, Mouriño JLP, do Nascimento Vieira F (2021) Increasing stocking densities affect hemato-immunological parameters of Nile tilapia reared in an integrated system with Pacific white shrimp using biofloc technology. Aquaculture 536:736497

    CAS  Google Scholar 

  • Ray AJ, Lewis BL, Browdy CL, Leffler JW (2010) Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, super intensive culture systems. Aquaculture 299:89–98

    Google Scholar 

  • Reid GK, Lefebvre S, Filgueira R, Robinson SMC, Broch OJ, Dumas A, Chopin T (2020) Performance measures and models for open-water integrated multi-trophic aquaculture. Rev Aquac 12:47–75

    Google Scholar 

  • Reid GK, Liutkus M, Robinson SMC et al (2009) A review of the biophysical properties of salmonid faeces: implications for aquaculture waste dispersal models and integrated multitrophic aquaculture. Aquac Res 40(3):257–273. https://doi.org/10.1111/j.1365-2109.2008.02065.x

    Article  Google Scholar 

  • Ren JS, Stenton-Dozey J, Plew DR, Fang J, Gall M (2012) An ecosystem model for optimizing production in integrated multitrophic aquaculture systems. Ecol Model 246:34–46

    Google Scholar 

  • Ridler N, Wowchuck M, Robinson B, Barrington K, Chopin T, Robinson S et al (2007) Integrated multi-trophic aquaculture (IMTA): a potential strategic choice for farmers. Aquac Econ Manag 11(1):99–110

    Google Scholar 

  • Rodrigues CG, Garcia BF, Verdegem M, Santos MR, Amorim RV, Valenti WC (2019) Integrated culture of Nile tilapia and Amazon river prawn in stagnant ponds, using nutrient-rich water and substrates. Aquaculture 503:111–117

    CAS  Google Scholar 

  • Rosa J, Lemos MFL, Crespo D, Nunes M, Freitas A, Ramos F, Miguel ÂP, Leston S (2020) Integrated multitrophic aquaculture systems – potential risks for food safety. Trends Food Sci Technol 96:79–90

    CAS  Google Scholar 

  • Samocha TM, Fricker J, Ali AM, Shpigel M, Neori A (2015) Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multitrophic Aquaculture (IMTA) system. Aquaculture 446:263–271

    Google Scholar 

  • Samocha TM, Patnaik S, Speed M, Ali AM, Burger JM, Almeida RV, Ayub Z (2007) Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac Eng 36(2):184–191

    Google Scholar 

  • Sanderson JC, Cromey CJ, Dring MJ, Kelly MS (2008) Distribution of nutrients for seaweed cultivation around salmon cages at farm sites in north – west Scotland. Aquaculture 278(1–4):60–68

    CAS  Google Scholar 

  • Sanz-Lazaro C, Sanchez-Jerez P (2020) Regional integrated multi-trophic aquaculture (RIMTA): spatially separated, ecologically linked. J Environ Manage 271:110921

    Google Scholar 

  • Sarà G, Zenone A, Tomasello A (2009) Growth of Mytilus galloprovincialis (mollusca, bivalvia) close to fish farms: a case of integrated multitrophic aquaculture within the Tyrrhenian Sea. Hydrobiologia 636(1):129–136

    Google Scholar 

  • Sarkar S, Rekha PN, Panigrahi A, Das RR, Rajamanickam S, Balasubramanian CP (2021) Integrated brackishwater farming of red seaweed Agarophyton tenuistipitatum and Pacific white leg shrimp Litopenaeus vannamei (Boone) in biofloc system: a production and bioremediation way out. Aquacult Int 29:2145–2159

    CAS  Google Scholar 

  • Sasikumar G, Viji CS (2016) Integrated multitrophic aquaculture systems (IMTA). Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability, Course Manual. ICAR, pp 47–55. http://eprints.cmfri.org.in/10666/1/7.%20Geetha%20Sasikumar.pdf

  • Schippers K, Sipkema D, Osinga R, Smidt H, Pomponi S, Martens D et al (2012) Cultivation of sponges, sponge cells and symbionts. Adv Mar Biol 62:273–337

    Google Scholar 

  • Sharifinia M, Keshavarzifard M, Hosseinkhezri P, Khanjani MH, Yap CK, Smith WO, Daliri M, Haghshenas A (2022) The impact assessment of desalination plant discharges on heavy metal pollution in the coastal sediments of the Persian Gulf. Mar Pollut Bull 178:113599

    CAS  Google Scholar 

  • Shi H, Zheng W, Zhang X, Zhu M, Ding D (2013) Ecological-economic assessment of monoculture and integrated multi-trophic aquaculture in Sanggou Bay of China. Aquaculture 410–411:172–178

    Google Scholar 

  • Shpigel M, Ari T, Ben Shauli L, Odintsov V, Ben-Ezra D (2016) Nutrient recovery and sludge management in seabream and grey mullet co-culture in integrated multi- trophic aquaculture (IMTA). Aquaculture 464:316–322

    CAS  Google Scholar 

  • Sicuro B, Castelar B, Mugetti D, Pastorino P, Chiarandon A, Menconi V, Galloni M, Prearo M (2020) Bioremediation with freshwater bivalves: a sustainable approach to reducing the environmental impact of inland trout farms. J Environ Manage 276:111327

    CAS  Google Scholar 

  • Skriptsova AV, Miroshnikova NV (2011) Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multitrophic aquaculture (IMTA). Biores Technol 102:3149–3154

    CAS  Google Scholar 

  • Slater MJ, Carton AG (2009) Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar Pollut Bull 58:1123–1129

    CAS  Google Scholar 

  • Soto D (2009) Integrated mariculture: a global review (No. 529). Food and Agriculture Organization of the United Nations (FAO). Fisheries and aquaculture technical paper, no. 529. Rome, p 183

  • Stabili L, Cecere E, Licciano M, Petrocelli A, Sicuro B, Giangrande A (2019) Integrated multitrophic aquaculture by-products with added value: the polychaete Sabella spallanzanii and the seaweed Chaetomorpha linum as potential dietary ingredients. Mar Drugs 17:677. https://doi.org/10.3390/md17120677

    Article  CAS  Google Scholar 

  • Stabili L, Licciano M, Giangrande A, Fanelli G, Cavallo RA (2006) Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar Environ Res 61:74–92

    CAS  Google Scholar 

  • Stabili L, Schirosi R, Licciano M, Mola E, Giangrande A (2010) Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotechnol 27:6

    Google Scholar 

  • Strand Ø, Jansen HM, Jiang Z, Robinson SMC (2019) Perspectives on bivalves providing regulating services in integrated multitrophic aquaculture. In: Smaal A, Ferreira J, Grant J, Petersen J, Strand Ø (eds) Goods and services of marine bivalves. Springer, Cham. https://doi.org/10.1007/978-3-319-96776-9_11

    Chapter  Google Scholar 

  • Sun L, Liu H, Gao Y, Jiang Z, Lin F, Chang L, Zhang Y (2020) Food web structure and ecosystem attributes of integrated multitrophic aquaculture waters in Sanggou Bay. Aquac Rep 16:100279

    Google Scholar 

  • Thomas M, Pasquet A, Aubin J, Nahon S, Lecocq T (2021) When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biol Rev 96(2):767–784

    Google Scholar 

  • Tom AP, Jayakumar JS, Biju M, Somarajan J, Ibrahim MA (2021) Aquaculture wastewater treatment technologies and their sustainability: a review. Energy Nexus 4:100022

    CAS  Google Scholar 

  • Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15

    CAS  Google Scholar 

  • Tórz A, Burda M, Połgęsek M, Sadowski J, Nędzarek A (2021) Biochemical transformations of nitrogen compounds in the integrated multi–trophic aquaculture the using media filled beds in plant cultivation. Aquaculture 533:736141

    Google Scholar 

  • Tórz A, Burda M, Półgęsek M, Sadowski J, Nędzarek A (2022) Transformation of phosphorus in an experimental integrated multitrophic aquaculture system using the media filled beds method in plant cultivation. Aquac Environ Int 14:1–14

    Google Scholar 

  • Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226(1):69–90

    Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang JG (2009) Ecological engineering in aquaculture — potential for integrated multitrophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1–4):1–9

    Google Scholar 

  • Van Rijn J (2013) Waste treatment in recirculating aquaculture systems. Aquacult Eng 53:49–56

    Google Scholar 

  • Varamogianni-Mamatsi D, Anastasiou TI, Vernadou E, Papandroulakis N, Kalogerakis N, Dailianis T, Mandalakis MA (2022) Multi-species investigation of sponges’ filtering activity towards marine microalgae. Mar Drugs 20:24. https://doi.org/10.3390/md20010024

    Article  Google Scholar 

  • Vega J, Álvarez-Gómez F, Güenaga L, Figueroa FL, Gómez-Pinchetti JL (2020) Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multitrophic aquaculture system. Aquaculture 522:735088

    CAS  Google Scholar 

  • Viji CS (2015) Studies on integrated multitrophic aquaculture in a tropical estuarine system in Kerala, India. Ph.D. Thesis, Central Institute of Fisheries Education, Mumbai, p 128

  • Viji CS, Chadha NK, Kripa V, Prema D, Prakash C, Sharma R, Jenni B, Mohamed KS (2014) Can oysters control eutrophication in an integrated fish-oyster aquaculture system? J Mar Biol Ass India 56(2):67–73

    Google Scholar 

  • Wang X, Olsen L, Reitan K, Olsen Y (2012) Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multitrophic aquaculture. Aquac Environ Interact 2(3):267–283. https://doi.org/10.3354/aei00044

    Article  Google Scholar 

  • Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365

    Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Google Scholar 

  • Whitmarsh DJ, Cook EJ, Black KD (2006) Searching for sustainability in aquaculture: an investigation into the economic prospects for an integrated salmon-mussel production system. Mar Policy 30(3):293–298

    Google Scholar 

  • Wichard T (2022) From model organism to application: bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Semin Cell Dev Biol Online. https://doi.org/10.1016/j.semcdb.2022.04.007

    Article  Google Scholar 

  • Wilfart A, Favalier N, Metaxa I, Platon C, Pouil S, Caruso D, Slembrouck J, Aubin J (2020) Integrated multi-trophic aquaculture in ponds: what environmental gain? An LCA point of view. 12th International Conference on Life Cycle Assessment of Food 2020 (LCA Food 2020), Towards Sustainable Agri-Food Systems, Berlin (virtual conference),  pp.206–208

  • Yang Y, Fei X, Song J, Hu H, Wang G, Chung IK (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255

    Google Scholar 

  • Yokoyama H (2013) Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—potential for integrated multitrophic aquaculture. Aquaculture 372:28–38. https://doi.org/10.1016/j.aquaculture.2012.10.022

    Article  Google Scholar 

  • Zhang J, Zhang S, Kitazawa D, Zhou J, Park S, Gao S, Shen Y (2019) Bio-mitigation based on integrated multitrophic aquaculture in temperate coastal waters: practice, assessment, and challenges. Lat Am J Aquat Res 47(2):212–223

    CAS  Google Scholar 

  • Zhang X, Zhang W, Xue L, Zhang B, Jin M, Fu W (2010) Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus. Biotechnol Bioeng 105:59–68

    CAS  Google Scholar 

  • Zhou Y, Yang H, Hu H, Liu Y, Mao Y, Zhou H et al (2006) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252(2):264–276

    Google Scholar 

Download references

Acknowledgements

We are grateful to game wardens that have devoted their lives to saving endangered animals and sharing their valuable data with us. We thank anonymous referees for helping to improve an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study and idea for the article: Mohammad Hossein Khanjani, Saeed Zahedi, Alireza Mohammadi.

Drafting the manuscript and literature search: Mohammad Hossein Khanjani, Saeed Zahedi, Alireza Mohammadi.

Revising the manuscript critically for important intellectual content: Mohammad Hossein Khanjani, Saeed Zahedi, Alireza Mohammadi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Hossein Khanjani.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanjani, M.H., Zahedi, S. & Mohammadi, A. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ Sci Pollut Res 29, 67513–67531 (2022). https://doi.org/10.1007/s11356-022-22371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22371-8

Keywords

Navigation