Skip to main content
Log in

Removal performance and mechanisms of Pb(II) and Sb(V) from water by iron-doped phosphogypsum: single and coexisting systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The serious environmental risks caused by Pb(II) and Sb(V) co-contamination increase the need for their efficient and simultaneous removal. In this study, the remediation feasibility by Fe-doped phosphogypsum (FPG) was elucidated for single systems with Pb or Sb pollutant and coexisting systems with both from water. As for single systems, Fe doping effectively enhanced the Pb(II) removal performance by phosphogypsum (PG) at low Pb(II) concentrations of below 100 mg/L via the combination of precipitation and complexation. The optimal removal rate of Sb(V) by FPG increased by 2.08–3.31 times as compared to that of by PG (10–120 mg/L), mainly due to the strong affinity of iron hydroxyl (≡Fe–O–H) towards Sb(V). Compared with the single systems, the coexistence greatly enhanced the Pb(II) and Sb(V) removal performance by FPG, and the interaction behavior between Pb(II) and Sb(V) on the FPG was concentration dependent. Briefly, the sorption of FPG controlled the elimination of low coexisting concentrations of Pb(II) and Sb(V), whereas the co-precipitation process between Pb(II) and Sb(V) predominated with high ions concentration. The significant synergistic effects were found during the removal of Pb(II) and Sb(V) on FPG in the coexisting system, which mainly attributed to precipitation, bridging complexation and electrostatic attraction. Considering the advantages such as facile preparation, low cost and high removal capacity, FPG is a promising material to uptake Pb(II) and/or Sb(V) from contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Ahmad M, Lee SS, Lim JE, Lee SE, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441

    Article  CAS  Google Scholar 

  • Ahmad M, Ok YS, Rajapaksha AU, Lim JE, Kim BY, Ahn JH, Lee YH, Al-Wabel MI, Lee SE, Lee SS (2016) Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J Hazard Mater 301:179–186

    Article  CAS  Google Scholar 

  • Aljerf L (2018) High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. J Environ Manage 225:120–132

    Article  CAS  Google Scholar 

  • Altaş L, Balkaya N, Cesur H (2017) Pb(II) Removal from aqueous solution and industrial wastewater by raw and lime-conditioned phosphogypsum. Int J Environ Res 11:111–123

    Article  Google Scholar 

  • Awual MR (2019) Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J Environ Chem Eng 7:103124

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM (2019) A ligand based innovative composite material for selective lead(II) capturing from wastewater. J Mol Liq 294:111679

    Article  CAS  Google Scholar 

  • Awual MR, Islam A, Hasan MM, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019) Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater. J Clean Prod 224:920–929

    Article  CAS  Google Scholar 

  • Barker AJ, Clausen JL, Douglas TA, Bednar AJ, Griggs CS, Martin WA (2021) Environmental impact of metals resulting from military training activities: a review. Chemosphere 265:129110

    Article  CAS  Google Scholar 

  • Chen H-X, Xu F-N, Chen Z-Z, Jiang O-Y, Gustave W, Tang X-J (2020) Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide. J Environ Sci 96:186–193

    Article  CAS  Google Scholar 

  • Cornelis G, Gerven TV, Snellings R, Verbinnen B, Elsen J, Vandecasteele C (2011) Stability of pyrochlores in alkaline matrices: solubility of calcium antimonate. Appl Geochemistry 26:809–817

    Article  CAS  Google Scholar 

  • Cornelis G, Etschmann B, Gerven TV, Vandecasteele C (2012) Mechanisms and modelling of antimonate leaching in hydrated cement paste suspensions. Cem Concr Res 42:1307–1316

    Article  CAS  Google Scholar 

  • Dehghani A, Aslani F, Panah NG (2021) Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties. Constr Build Mater 293:123527

    Article  CAS  Google Scholar 

  • Dinake P, Kelebemang R (2019) Critical assessment of mechanistic pathways for chemical remediation techniques applied to Pb impacted soils at shooting ranges – a review. Env Pollut Bioavail 31:282–305

    Article  CAS  Google Scholar 

  • El-Didamony H, Gado HS, Awwad NS, Fawzy MM, Attallah MF (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. J Hazard Mater 244–245:596–602

    Article  Google Scholar 

  • Feng Z-Y, Chen N, Liu T, Feng C-P (2022) KHCO3 activated biochar supporting MgO for Pb(II) and Cd(II) adsorption from water: experimental study and DFT calculation analysis. J Hazard Mater 426:128059

    Article  CAS  Google Scholar 

  • Garau G, Lauro GP, Diquattro S, Garau M, Castaldi P (2019) Sb(V) adsorption and desorption onto ferrihydrite: influence of pH and competing organic and inorganic anions. Environ Sci Pollut Res 26:27268–27280

    Article  CAS  Google Scholar 

  • Griggs CS, Martin WA, Larson SL, O’Connnor G, Fabian G, Zynda G, Mackie D (2011) The effect of phosphate application on the mobility of antimony in firing range soils. Sci Total Environ 409:2397–2403

    Article  CAS  Google Scholar 

  • Guaya D, Jiménez R, Sarango J, Valderrama C, Cortina JL (2021) Iron-doped natural clays: Low-cost inorganic adsorbents for phosphate recovering from simulated urban treated wastewater. J Water Process Eng 43:102274

    Article  Google Scholar 

  • Guo H-B, Barnard AS (2013) Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem a 1:27–42

    Article  CAS  Google Scholar 

  • Guo X-J, Wu Z-J, He M-C, Meng X-G, Jin X, Qiu N, Zhang J (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater 276:339–345

    Article  CAS  Google Scholar 

  • He X-Y, Min X-B, Peng T-Y, Ke Y, Zhang F-P, Wang Y-Y, Sillanpaa M (2019) Highly efficient antimonate removal from water by pyrite/hematite bi-mineral: performance and mechanism studies. J Chem Eng Data 64:5910–5919

    Article  CAS  Google Scholar 

  • He X-Y, Min X-B, Peng T-Y, Ke Y, Zhao F-P, Sillanpää M, Wang Y-Y (2020) Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight. Environ Sci Pollut Res 27:16484–16495

    Article  CAS  Google Scholar 

  • Heier LS, Lien IB, Strømseng AE, Ljønes M, Rosseland BO, Tollefsen K, Salbu B (2009) Speciation of lead, copper, zinc and antimony in water draining a shooting range—time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.). Sci Total Environ 407:4047–4055

    Article  CAS  Google Scholar 

  • Herath I, Vithanage M, Bundschuh J (2017) Antimony as a global dilemma: geochemistry, mobility, fate and transport*. Environ Pollut 223:545–559

    Article  CAS  Google Scholar 

  • Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34:248–254

    Article  CAS  Google Scholar 

  • Kameda K, Hashimoto Y, Wang S-L, Hirai Y, Miyahara H (2017) Simultaneous and continuous stabilization of As and Pb in contaminated solution and soil by a ferrihydrite-gypsum sorbent. J Hazard Mater 327:171–179

    Article  CAS  Google Scholar 

  • Klitzke S, Lang F (2009) Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil − effects of pH increase and counterion valency. J Environ Qual 38:933–939

    Article  CAS  Google Scholar 

  • Lamzougui G, Es-Said A, Nafai H, Chafik D, Bouhaouss A, Bchitou R (2021) Optimization and modeling of Pb(II) adsorption from aqueous solution onto phosphogypsum by application of response surface methodology. Phosphorus Sulfur Silicon Relat Elem 196(6):521–529

    Article  CAS  Google Scholar 

  • Li R, Li Q, Sun X-Y, Li J-S, Shen J-Y, Han W-Q, Wang L-J (2019) Efficient and rapid removal of EDTA-chelated Pb(II) by the Fe(III)/flue gas desulfurization gypsum (FGDG) system. J Colloid Interface Sci 542:379–386

    Article  CAS  Google Scholar 

  • Li Q, Li R, Ma X-Y, Sarkar B, Sun X-Y, Bolan N (2020) Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified a-FeOOH*. Environ Pollut 267:115658

    Article  CAS  Google Scholar 

  • Li J, Zhao Z-J, Song Y-R, You Y, Li J, Cheng X-W (2021a) Synthesis of Mg(II) doped ferrihydrite-humic acid coprecipitation and its Pb(II)/Cd(II) ion sorption mechanism. Chin Chem Lett 32(10):3231–3236

  • Li B-Y, Wei D-N, Zhou Y-M, Huang Y-Y, Tie B-Q (2021b) Mechanisms of arsenate and cadmium co-immobilized on ferrihydrite inferred from ternary surface configuration. Chem Eng J 424:130410

  • Li L, Wang B, Li W, Liu T-Z, Wu P, Xu Q-Y, Liu S-R (2022) Effective Sb(V) from aqueous solution using phosphogypsum-modified biochar. Environ Pollut 301:119032

  • Liao Q, Tu G-Y, Yang Z-H, Wang H-Y, He L-X, Tang J-Q, Yang W-C (2019) Simultaneous adsorption of As(III), Cd(II) and Pb(II) by hybrid bio-nanocomposites of nano hydroxy ferric phosphate and hydroxy ferric sulfate particles coating on aspergillus niger. Chemosphere 223:551–559

    Article  CAS  Google Scholar 

  • Liu R-P, Liu F, Hu C-Z, He Z, Liu H-J, Qu J-H (2015) Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: positive effects of Cd(II) on Sb(V) adsorption. J Hazard Mater 300:847–854

    Article  CAS  Google Scholar 

  • Liu B, Jian M-P, Wang H, Zhang G-S, Liu R-P, Zhang X-W, Qu J-H (2018) Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloid Surface a 538:164–172

    Article  CAS  Google Scholar 

  • Liu Y-W, Luan J-D, Zhang C-Y, Ke X, Zhang H-J (2019a) The adsorption behavior of multiple contaminants like heavy metal ions and p-nitrophenol on organic-modified montmorillonite. Environ Sci Pollut Res 26:10387–10397

  • Liu J-Q, Wu P-X, Li S-S, Chen M-Q, Cai W-T, Zou D-H, Zhu N-W, Dang Z (2019b) Synergistic deep removal of As(III) and Cd(II) by a calcined multifunctional MgZnFe-CO3 layered double hydroxide: photooxidation, precipitation and adsorption. Chemosphere 225:115–125

  • Long X-J, Wang X, Guo X-J, He M-C (2020) A review of removal technology for antimony in aqueous solution. J Environ Sci 90:189–204

    Article  CAS  Google Scholar 

  • Luo J-M, Luo X-B, Crittenden J, Qu J-H, Bai Y-H, Peng Y, Li J-H (2015) Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ Sci Technol 49:11115–11124

    Article  CAS  Google Scholar 

  • Maneechakr P, Karnjanakom S (2021) Facile utilization of magnetic MnO2@Fe3O4@sulfonated carbon sphere for selective removal of hazardous Pb(II) ion with an excellent capacity: adsorption behavior/ isotherm/ kinetic/ thermodynamic studies. J Environ Chem Eng 9:106191

    Article  CAS  Google Scholar 

  • Mariussen E, Johnsen IV, Strømseng AE (2015) Selective adsorption of lead, copper and antimony in runoff water from a small arms shooting range with a combination of charcoal and iron hydroxide. J Environ Manage 150:281–287

    Article  CAS  Google Scholar 

  • Meng K-Y, Wu X-W, Zhang X-Y, Su S-M, Huang Z-H, Min X, Liu Y-G, Fang M-H (2019) Efficient adsorption of the Cd(II) and As(V) using novel adsorbent ferrihydrite/manganese dioxide composites. ACS Omega 4:18627–18636

    Article  CAS  Google Scholar 

  • Morales J, Astilleros JM, Fernández-Díaz L, Álvarez-Lloret P, Jiménez A (2013) Anglesite (PbSO4) epitactic overgrowths and substrate-induced twinning on anhydrite (CaSO4) cleavage surfaces. J Cryst Growth 380:130–137

    Article  CAS  Google Scholar 

  • Morales J, Astilleros JM, Jiménez A, Göttlicher J, Steininger R, Fernández-Díaz L (2014) Uptake of dissolved lead by anhydrite surfaces. Appl Geochemistry 40:89–96

    Article  CAS  Google Scholar 

  • Mousa SM, Ammar NS, Ibrahim HA (2016) Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J Saudi Chem Soc 20:357–365

    Article  CAS  Google Scholar 

  • Ogawa S, Katoh M, Sato T (2014) Contribution of hydroxyapatite and ferrihydrite in combined applications for the removal of lead and antimony from aqueous solutions. Water Air Soil Pollut 225:2023–2034

    Article  Google Scholar 

  • Okkenhaug G, Zhu Y-G, Luo L, Lei M, Li X, Mulder J (2011) Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ Pollut 159:2427–2434

    Article  CAS  Google Scholar 

  • Okkenhaug G, Amstatter K, Bue HL, Cornelissen G, Breedveld GD, Henriksen T, Mulder J (2013) Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ Sci Technol 47:6431–6439

    Article  CAS  Google Scholar 

  • Okkenhaug G, Gebhardt KAG, Amstaetter K, Bue HL, Herzel H, Mariussen E, Almås AR, Cornelissen G, Breedveld GD, Rasmussen G, Mulder J (2016) Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J Hazard Mater 307:336–343

    Article  CAS  Google Scholar 

  • Oladoye PO (2022) Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste) water: A state-of-the-art review. Chemosphere 287:132130

    Article  CAS  Google Scholar 

  • Pain DJ, Dickie I, Green RE, Kanstrup N, Cromie R (2019) Wildlife, human and environmental costs of using lead ammunition: an economic review and analysis. AMBIO J Hum Environ 48:969–988

    Article  Google Scholar 

  • Qi P-F, Pichler T (2016) Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: implications for oxidation and competition. Chemosphere 145:55–60

    Article  CAS  Google Scholar 

  • Qi Z-L, Joshi TP, Liu R-P, Liu H-J, Qu J-H (2017) Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J Hazard Mater 329:193–204

    Article  CAS  Google Scholar 

  • Shi M-Q, Min X-B, Ke Y, Li Z, Yang Z-H, Wang S, Peng N, Yan X, Luo S, Wu J-H, Wei Y-J (2021) Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci Total Environ 752:141930

    Article  CAS  Google Scholar 

  • Silva LFO, Oliveira MLS, Crissien TJ, Santosh M, Bolivar J, Shao L-Y, Dotto GL, Gasparotto J, Schindler M (2022) A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. Chemosphere 286:131513

    Article  CAS  Google Scholar 

  • Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Djordevic AB, Tinkov AA (2021) Environmental and health hazards of military metal pollution. Environ Res 201:111568

    Article  CAS  Google Scholar 

  • Song L, Feng Y-F, Zhu C-Q, Liu F-Q, Li A-M (2020) Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites. J Hazard Mater 388:121776

    Article  CAS  Google Scholar 

  • Strømseng AE, Ljønes M, Bakka L, Mariussen E (2009) Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J Environ Monitor 11:1259–1267

    Article  Google Scholar 

  • Teng F-Y, Zhang Y-X, Wang D-Q, Shen M-C, Hu D-F (2020) Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J Hazard Mater 398:122977

    Article  CAS  Google Scholar 

  • Wang L, Wan C-L, Zhang Y, Lee DJ, Liu X, Chen X-F, Tay J-H (2015) Mechanism of enhanced Sb(V) removal from aqueous solution using chemically modified aerobic granules. J Hazard Mater 284:43–49

    Article  CAS  Google Scholar 

  • Wang W, Hua Y-L, Li S-L, Yan W-L, Zhang W-X (2016) Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a comparative study. Chem Eng J 304:79–88

    Article  CAS  Google Scholar 

  • Wang L, Li Z-T, Wang Y, Brookes P-C, Wang F, Zhang Q-C, Xu J-M, Liu X-M (2021) Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects. Sci Total Environ 750:141672

    Article  CAS  Google Scholar 

  • Xie Y-Y, Yuan X-Z, Wu Z-B, Zeng G-M, Jiang L-B, Peng X, Li H (2019) Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II). J Colloid Interface Sci 536:440–455

    Article  CAS  Google Scholar 

  • Xie H-Y, Liu Y-H, Rao B, Wu J-Z, Gao L-K, Chen L-Z, Tian X-S (2021) Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor. Sep Purif Technol 267:118621

    Article  CAS  Google Scholar 

  • Xu J, Li X-G, Liu X-B, Dong C-F, Deem N, Barbero E (2005) X-ray photoelectron spectroscopy study of passive layers formed on Pb-Sn and Pb-Sb alloys. Metall Mater Trans A 36:2175–2190

    Article  Google Scholar 

  • Yan Y-B, Li Q, Sun X-Y, Ren Z-Y, He F, Wang Y-L, Wang L-J (2015) Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(II) and Cd(II) from wastewater. J Colloid Interface Sci 457:86–95

    Article  CAS  Google Scholar 

  • Yang K-L, Zhou C-C, Li C, Dou S, Li X-G, Wang X (2021) Efficient removal of Sb(V) in textile wastewater through novel amorphous Si-doped Fe oxide composites: phase composition, stability and adsorption mechanism. Chem Eng J 407:127217

    Article  CAS  Google Scholar 

  • Zhang X-D, Shi D-Y, Li X, Zhang Y-J, Wang J-J, Fan J (2019) Nanoscale dispersing of zero-valent iron on CaCO3 and their significant synergistic effect in high performance removal of lead. Chemosphere 224:390–397

    Article  CAS  Google Scholar 

  • Zhang S-J, Shi Q-T, Chou T-M, Christodoulatos C, Korfiatis GP, Meng X-G (2020) Mechanistic study of Pb(II) removal vy TiO2 and effect of PO4. Langmuir 36(46):13918–13927

  • Zhang Y, Li H, Jiang Q, Jiang S-M, Wang Y-F, Wang L (2021a) One-pot synthesis of a novel P-doped ferrihydrite nanoparticles for efficient removal of Pb(II) from aqueous solutions: performance and mechanism. J Environ Chem Eng 9(4):105721

  • Zhang X-Y, Xie N-Y, Guo Y, Niu D, Sun H-B, Yang Y (2021b) Insights into adsorptive removal of antimony contaminants: functional materials, evaluation and prospective. J Hazard Mater 418:126345

    Article  CAS  Google Scholar 

  • Zhang Z, Wang T, Zhang H-X, Liu Y-H, Xing B-S (2021c) Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Environ 757:143910

    Article  CAS  Google Scholar 

  • Zhang C, Liu L-B, Chen X-Y, Dai Y-C, Jia H-Z (2022) Mechanistic understanding of antimony(V) complexation on montmorillonite surfaces: insights from first-principles molecular dynamics. Chem Eng J 428:131157

  • Zhu K-C, Duan Y-Y, Wang F, Gao P, Jia H-Z, Ma C-Y, Wang C-Y (2017) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246

    Article  CAS  Google Scholar 

  • Ziegenheim S, Szabados M, Kónya Z, Kukovecz Á, Pálinkó I, Sipos P (2021) Manipulating the crystallization kinetics and morphology of gypsum, CaSO4·2H2O via addition of citrate at high levels of supersaturation and the effect of high salinity. Polyhedron 204:115253

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Department of Jiangsu Province, China (BK20161497), the Fundamental Research Funds for the Central Universities (No.30917011308).

Author information

Authors and Affiliations

Authors

Contributions

Xinyue Ma: investigation, methodology, writing-original draft. Qiao Li: investigation, methodology, formal analysis, resources, writing-review&editing. Rui Li and Wei Zhang: methodology, resources. writing-review. Xiuyun Sun: conceptualization, methodology, writing-review. Jiansheng Li: resources, writing-review. Jinyou Shen: writing-review. Weiqing Han: writing-review.

Corresponding author

Correspondence to Xiuyun Sun.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read this manuscript and consent for publication in Environmental Science and Pollution Research.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Guilherme L. Dotto

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38067 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, Q., Li, R. et al. Removal performance and mechanisms of Pb(II) and Sb(V) from water by iron-doped phosphogypsum: single and coexisting systems. Environ Sci Pollut Res 29, 87413–87425 (2022). https://doi.org/10.1007/s11356-022-21862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21862-y

Keywords

Navigation