Skip to main content

Advertisement

Log in

Influence of local geological data and geographical parameters to assess regional health impact in LCA. Tomsk oblast’, Russian Federation application case

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The research paper is aimed to modify the human health impact assessment of Cr in soils. The current article presents the input of several critical parameters for the human health Impact Score (IShum) assessment in soils. The modification of the IShum is derived using geological data — results of neutron activation analysis of soils are used in the IShum calculation; research area is divided using the watersheds and population size and density. Watersheds reflect the local environmental conditions of the territory unlike the administrative units (geographical areas of the studied region) due to their geological independence. The calculations of the characterization factor value underestimate the influence of the population size and density on the final result. Default characterization factor values cannot be considered during the assessment of the potential human health impact for the big sparsely inhabited areas. In case of very low population density, the result will be overrated and underestimated in the opposite case. The current approach demonstrates that the geographical separation in the USEtox model should be specified. The same approach can be utilized for other geo zones due to the accessibility of this information (area size, population size, and density, geological, and landscape features).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All relevant data generated during the study are included in the article.

References

  • Adam V, Quaranta G, Loyaux-Lawniczak S (2013) Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site. Environ Sci Pollut Res 20:3312–3321. https://doi.org/10.1007/s11356-012-1254-9

    Article  CAS  Google Scholar 

  • Adimalla N (2020) Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: a review. Environ Geochem Health 42:173–190. https://doi.org/10.1007/s10653-019-00324-4

    Article  CAS  Google Scholar 

  • Alejandrino C, Mercante I, Bovea MD (2021) Life cycle sustainability assessment: lessons learned from case studies. Environ Impact Assess Rev 87:106517. https://doi.org/10.1016/j.eiar.2020.106517

    Article  Google Scholar 

  • Alloway BJ (ed) (2013) Heavy Metals in Soils. Springer, Netherlands, Dordrecht

    Google Scholar 

  • Arbuzov S, Ershov V, Potzeluyev A, Rikhvanov L (1999) Rare elements in Kuznetsk basin coals. Committee of Natural Resources for the Kemerovo region, Kemerovo

    Google Scholar 

  • Arbuzov SI (2017) Rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) in the coals of the North Asia (Siberia, Russian Far East, North China, Mongolia, Kazakhstan). Geosfernye issledovaniya 6–27. https://doi.org/10.17223/25421379/5/1

  • Arbuzov SI, Chekryzhov IY, Finkelman RB et al (2019) Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int J Coal Geol 206:106–120. https://doi.org/10.1016/j.coal.2018.10.013

    Article  CAS  Google Scholar 

  • Arbuzov SI, Ershov VV (2007) Geochemistry of rare elements in Siberian coals [Geokhimiia redkikh elementov v ugliakh Sibiri]. Print, Tomsk

    Google Scholar 

  • Arbuzov SI, Mezhibor AM, Spears DA et al (2016) Nature of tonsteins in the Azeisk deposit of the Irkutsk Coal Basin (Siberia, Russia). Int J Coal Geol 153:99–111. https://doi.org/10.1016/j.coal.2015.12.001

    Article  CAS  Google Scholar 

  • Ashraf A, Bibi I, Niazi NK et al (2017) Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Intl J Phytorem 19:605–613. https://doi.org/10.1080/15226514.2016.1256372

    Article  CAS  Google Scholar 

  • Balachandar V, Arun M, Mohana Devi S et al (2010) Evaluation of the genetic alterations in direct and indirect exposures of hexavalent chromium [Cr(VI)] in leather tanning industry workers North Arcot District, South India. Int Arch Occup Environ Health 83:791–801. https://doi.org/10.1007/s00420-010-0562-y

    Article  CAS  Google Scholar 

  • Bare JC (2006) Risk assessment and Life-Cycle Impact Assessment (LCIA) for human health cancerous and noncancerous emissions: integrated and complementary with consistency within the USEPA. Hum Ecol Risk Assess 12:493–509. https://doi.org/10.1080/10807030600561683

    Article  CAS  Google Scholar 

  • Bare JC, Hofstetter P, Pennington DW, de Haes HAU (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5:319. https://doi.org/10.1007/BF02978665

    Article  Google Scholar 

  • Baroni MV, Podio NS, Badini RG et al (2011) How much do soil and water contribute to the composition of meat? A case study: meat from three areas of Argentina. J Agric Food Chem 59:11117–11128. https://doi.org/10.1021/jf2023929

    Article  CAS  Google Scholar 

  • Başaran N, Duydu Y, Bolt HM (2012) Reproductive toxicity in boron exposed workers in Bandirma, Turkey. J Trace Elem Med Biol 26:165–167. https://doi.org/10.1016/j.jtemb.2012.04.013

    Article  CAS  Google Scholar 

  • Bashkin VN, Galiulin RV, Galiulina RA, Arabsky AK (2019) Risk of soil contamination by heavy metals through gas-dust emissions. Issues of. Risk Anal 16:42–49. https://doi.org/10.32686/1812-5220-2019-16-42-49

    Article  Google Scholar 

  • Belyanovskaya A, Laratte B, Perry N, Baranovskaya N (2019) A regional approach for the calculation of characteristic toxicity factors using the USEtox model. Sci Total Environ 655:676–683. https://doi.org/10.1016/j.scitotenv.2018.11.169

    Article  CAS  Google Scholar 

  • Belyanovskaya AI, Laratte B, Rajput VD et al (2020) The innovation of the characterisation factor estimation for LCA in the USETOX model. J Clean Prod 122432. https://doi.org/10.1016/j.jclepro.2020.122432

  • Bowen HJM (1979) Environmental chemistry of elements. H. J. Bowen. -N.Y.: Acad. Press, p 333

  • Brasili E, Bavasso I, Petruccelli V et al (2020) Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci Rep 10:1920. https://doi.org/10.1038/s41598-020-58639-7

    Article  CAS  Google Scholar 

  • Bratec T, Kirchhübel N, Baranovskaya N et al (2019) Towards integrating toxicity characterization into environmental studies: case study of bromine in soils. Environ Sci Pollut Res 26:19814–19827. https://doi.org/10.1007/s11356-019-05244-5

    Article  Google Scholar 

  • Brevik EC, Sauer TJ (2015) The past, present, and future of soils and human health studies. Soil 1:35–46. https://doi.org/10.5194/soil-1-35-2015

    Article  Google Scholar 

  • Brown SL, Chaney RL, Hettiarachchi GM (2016) Lead in urban soils: a real or perceived concern for urban agriculture? J Environ Qual 45:26–36. https://doi.org/10.2134/jeq2015.07.0376

    Article  CAS  Google Scholar 

  • Bulle C, Margni M, Patouillard L et al (2019) IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess 24:1653–1674. https://doi.org/10.1007/s11367-019-01583-0

    Article  CAS  Google Scholar 

  • Carr R, Zhang C, Moles N, Harder M (2008) Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environ Geochem Health 30:45–52. https://doi.org/10.1007/s10653-007-9106-0

    Article  CAS  Google Scholar 

  • Chatterjee J, Kumar P, Sharma PN, Tewari RK (2015) Chromium toxicity induces oxidative stress in turnip. Indian J Plant Physiol 20:220–226. https://doi.org/10.1007/s40502-015-0163-6

    Article  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ (1998) Brain Res. 799

  • Danesh Miah M, Farhad Hossain Masum M, Koike M (2010) Global observation of EKC hypothesis for CO2, SO and NO emission: a policy understanding for climate change mitigation in Bangladesh. Energy Policy 38:4643–4651. https://doi.org/10.1016/j.enpol.2010.04.022

    Article  CAS  Google Scholar 

  • de Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43. https://doi.org/10.1021/es800456m

  • Denisova OA, Chernogoryuk GE, Egorova KK et al (2016) The role of geo-ecological factors in development of sarсoidosis morbidity in Tomsk and the Tomsk region. Zdravookhranenie Rossiiskoi Federatsii (Health Care of the Russian Federation, Russian journal) 60:147–151. https://doi.org/10.18821/0044-197

    Article  Google Scholar 

  • Doyi I, Essumang D, Gbeddy G et al (2018) Spatial distribution, accumulation and human health risk assessment of heavy metals in soil and groundwater of the Tano Basin, Ghana. Ecotoxicol Environ Saf 165:540–546. https://doi.org/10.1016/j.ecoenv.2018.09.015

    Article  CAS  Google Scholar 

  • Duan X-C, Yu H-H, Ye T-R et al (2020) Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: a case of suburban area in Beijing, China. Ecological Indicators 112:106085. https://doi.org/10.1016/j.ecolind.2020.106085

    Article  CAS  Google Scholar 

  • European Commission. Joint Research Centre. Institute for Environment and Sustainability. (2011) International reference life cycle data system (ILCD) handbook general guide for life cycle assessment: provisions and action steps. Publications Office

  • Evseeva N.S. (2001) Geography of the Tomsk region. Natural conditions and resources Tomsk. Tomsk Polytechnic University, Tomsk

  • Fantke P, Bijster M, Guignard C, et al (2017) USEtox® 2.0, Documentation version 1

  • Fantke P, Chiu WA, Aylward L et al (2021) Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int J Life Cycle Assess 26:899–915. https://doi.org/10.1007/s11367-021-01889-y

    Article  CAS  Google Scholar 

  • Fathizad H, Ardakani MAH, Heung B et al (2020) Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecol Indic 118:106736. https://doi.org/10.1016/j.ecolind.2020.106736

    Article  CAS  Google Scholar 

  • Federal State Statistics Service [Rosstat]. https://rosstat.gov.ru. Accessed 13 Jan 2021

  • Franke BM, Gremaud G, Hadorn R, Kreuzer M (2005) Geographic origin of meat-elements of an analytical approach to its authentication. Eur Food Res Technol 221:493–503. https://doi.org/10.1007/s00217-005-1158-8

    Article  CAS  Google Scholar 

  • Glazovsky N. F. (1982) Tekhnogennye potoki veschestva v biosfere Technogenic flows of matter in bioshepere. Dobytcha water resources and their future 7–28

  • Goldshmidt V.M. (1952) Geochemical principles of the distribution of trace elements [Geokhimicheskie printsipy raspredeleniia redkikh elementov]. Москва

  • Grigorev N. A. (2009) Distribution of chemical elements in the upper part of the continental crust [Raspredelenie khimicheskikh elementov v verkhnei chasti kontinentalnoi kory]. UB RAS, Ekaterinburg

  • Guertin J (2005) Toxicity and health effects of chromium (all oxidation states). Chromium (VI) Handbook 215–234. doi:https://doi.org/10.1201/9780203487969.ch6

  • Hauschild M (2006) Spatial differentiation in life cycle impact assessment: a decade of method development to increase the environmental realism of LCIA. Int J Life Cycle Assess 11:11–13. https://doi.org/10.1065/lca2006.04.005

    Article  Google Scholar 

  • Hauschild M, Potting J (2000) Spatial differentiation in life cycle impact assessment - the EDIP2003 methodology. Report for the Danish Environmental Protection Agency. 1–195

  • Hauschild MZ, Huijbregts M, Jolliet O et al (2008) Building a model based on scientific consensus for life cycle impact assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42:7032–7037. https://doi.org/10.1021/es703145t

    Article  CAS  Google Scholar 

  • He B, Wang W, Geng R et al (2021) Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China. Ecotoxicol Environ Saf 207:111234. https://doi.org/10.1016/j.ecoenv.2020.111234

    Article  CAS  Google Scholar 

  • He B, Zhao X, Li P et al (2019) Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. Sci Total Environ 660:348–357. https://doi.org/10.1016/j.scitotenv.2018.11.339

    Article  CAS  Google Scholar 

  • Hedberg J, Fransson K, Prideaux S et al (2019) Improving the life cycle impact assessment of metal ecotoxicity: importance of chromium speciation, water chemistry, and metal release. Sustainability 11:1655. https://doi.org/10.3390/su11061655

    Article  CAS  Google Scholar 

  • Huijbregts M, Steinmann Z, Elshout P, et al (2016) ReCiPe2016: a harmonized life cycle impact assessment method at midpoint and endpoint level. RIVM Report 2016-0104. Bilthoven, The Netherlands

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147. https://doi.org/10.1007/s11367-016-1246-y

    Article  Google Scholar 

  • Islam M, Karim M, Zheng X, Li X (2018) Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: a critical review. Int J Environ Res Public Health 15:2825. https://doi.org/10.3390/ijerph15122825

    Article  CAS  Google Scholar 

  • Jafari A, Ghaderpoori M, Kamarehi B, Abdipour H (2019) Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory, Iran. Environ Earth Sci 78:250. https://doi.org/10.1007/s12665-019-8220-5

    Article  CAS  Google Scholar 

  • Jia Z, Wang J, Zhou X et al (2020) Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ Pollut 256:113505. https://doi.org/10.1016/j.envpol.2019.113505

    Article  CAS  Google Scholar 

  • Ke X, Gui S, Huang H et al (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 175:473–481. https://doi.org/10.1016/j.chemosphere.2017.02.029

    Article  CAS  Google Scholar 

  • Khitrov G (The ROPD of D, Jaeger R (The ROPD of D (2001) Chromium toxicity. http://www.nyu.edu/classes/jaeger/chromium_toxicity.htm. Accessed 13 Jan 2021

  • Kim JS, Hwang IM, Lee GH et al (2017) Geographical origin authentication of pork using multi-element and multivariate data analyses. Meat Sci 123:13–20. https://doi.org/10.1016/j.meatsci.2016.08.011

    Article  CAS  Google Scholar 

  • Krivov MA, Luneva IU V., ZHuravleva E V. (2019) State report on the state and protection of the environment of the Tomsk region in 2019 [Gosudarstvennyi doklad o sostoianii i okhrane okruzhaiushchei sredy Tomskoi oblasti v 2019 godu]. Tomsk

  • Kvasnikova Z (2003) Geochemical landscapes of the Tom-Yay interfluves: within the Tomsk region [Geohimicheskie landshafty Tom’-Jajskogo mezhdurech’ja: V predelah Tomskoj oblasti]. Tomsk State University

  • Li C, Zhou K, Qin W et al (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam Int J 28:380–394. https://doi.org/10.1080/15320383.2019.1592108

    Article  CAS  Google Scholar 

  • Liang L, Wang Y, Ridoutt BG et al (2019) Agricultural subsidies assessment of cropping system from environmental and economic perspectives in North China based on LCA. Ecol Indic 96:351–360. https://doi.org/10.1016/j.ecolind.2018.09.017

    Article  CAS  Google Scholar 

  • Luo Y, Song K, Ding X, Wu X (2021) Environmental sustainability of textiles and apparel: a review of evaluation methods. Environ Impact Assess Rev 86:106497. https://doi.org/10.1016/j.eiar.2020.106497

    Article  Google Scholar 

  • Lv J, Wang Y (2018) Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China. Chemosphere 212:964–973. https://doi.org/10.1016/j.chemosphere.2018.08.155

    Article  CAS  Google Scholar 

  • Mezhibor A M (2009) Ecogeochemistry of trace elements in highmoor peats of the Tomsk region [Ekogeokhimiia elementov-primesei v verkhovykh torfakh Tomskoi oblasti]

  • Mikhalchuk AA, IAzikov EG (2014) Multivariate statistical analysis of ecological and geochemical measurements. Part II. Computer workshop. [Mnogomernyi statisticheskii analiz ekologo-geokhimicheskikh izmerenii CHast II Kompiuternyi praktikum]. TPU, Tomsk

  • Milanovskii EE (1996) Geology of Russia and the near abroad (Northern Eurasia) [Geologiia Rossii i blizhnego zarubezhia Severnoi Evrazii]. MSU, Moscow

  • Mirmiran P, Noori N, Zavareh MB, Azizi F (2009) Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 58:460–468. https://doi.org/10.1016/j.metabol.2008.11.002

    Article  Google Scholar 

  • Nag R, O’Rourke SM, Cummins E (2022) Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s – a focus on Ireland. Sci Total Environ 802:149839. https://doi.org/10.1016/j.scitotenv.2021.149839

    Article  CAS  Google Scholar 

  • Ni S, Ju Y, Hou Q et al (2009) Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Prog Nat Sci 19:1133–1139. https://doi.org/10.1016/j.pnsc.2009.01.008

    Article  CAS  Google Scholar 

  • Nikolaeva NYu (2020) Accumulation of heavy metals in soil and in fodder products in the southeast of the Tomsk region [Akkumuliatsiia tiazhelykh metallov v pochve i v kormovoi produktsii iugo-vostoka Tomskoi oblasti]. In: III National (All-Russian) Scientific Conference “Theory and Practice of Modern Agrarian Science.” Novosibirsk, pp 514–517

  • Nikolaeva I V. (1967) Bakcharskoe oolitic iron ore deposit [Bakcharskoe mestorozhdenie oolitovykh zheleznykh rud]. 129

  • Nordborg M, Arvidsson R, Finnveden G et al (2017) Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01. Environ Impact Assess Rev 62:110–114. https://doi.org/10.1016/j.eiar.2016.08.004

    Article  Google Scholar 

  • Panichev AM, Baranovskaya NV, Seryodkin IV., et al (2021) Landscape REE anomalies and the cause of geophagy in wild animals at kudurs (mineral salt licks) in the Sikhote-Alin (Primorsky Krai, Russia). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01014-w

  • Pu Y, Laratte B, Marks RS, Ionescu RE (2017) Impact of copper nanoparticles on porcine neutrophils: ultrasensitive characterization factor combining chemiluminescence information and USEtox assessment model. Mater Today Commun 11:68–75. https://doi.org/10.1016/j.mtcomm.2017.02.008

    Article  CAS  Google Scholar 

  • Qu S, Wu W, Nel W, Ji J (2020) The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci Total Environ 708:134572. https://doi.org/10.1016/j.scitotenv.2019.134572

    Article  CAS  Google Scholar 

  • Rikhvanov L, Baranovskaya N, Korogod N, et al (2019) Elemental composition of biological water as an indicator of technogenesis. Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330: https://doi.org/10.18799/24131830/2019/2/122

  • Rikhvanov L, Baranovskaya N, Soktoev B, Mongolina T (2011) Evaluation of drinking water according to geochemical composition of its salt deposition. 8th International Conference on Environmental Engineering, ICEE 2011 337–342

  • Rikhvanov, L., Yazikov E, Sukhikh J, et al (2006) Особенности of Natural Environments of Tomsk District and Diseases. Tomsk

  • Rikhvanov LP, Kropanin SS, Babenko SA (2001) Zircon-ilmenite placer deposits - as a potential source of development of the West Siberian region [TSirkon-ilmenitovye rossypnye mestorozhdeniia - kak potentsialnyi istochnik razvitiia Zapadno-Sibirskogo regiona]. SARS, Kemerovo

  • Rosenbaum RK, Bachmann TM, Gold LS et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. https://doi.org/10.1007/s11367-008-0038-4

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Huijbregts MAJ, Henderson AD et al (2011) USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16:710–727. https://doi.org/10.1007/s11367-011-0316-4

    Article  CAS  Google Scholar 

  • Sall ML, Diaw AKD, Gningue-Sall D et al (2020) Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27:29927–29942. https://doi.org/10.1007/s11356-020-09354-3

    Article  CAS  Google Scholar 

  • Senesil GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377. https://doi.org/10.1016/S0045-6535(99)00115-0

    Article  Google Scholar 

  • Sevbitov A, Kuznetsova M, Dorofeev A et al (2020) Dental anomalies in people living in radionuclide-contaminated regions. J Environ Radioact 216:106190. https://doi.org/10.1016/j.jenvrad.2020.106190

    Article  CAS  Google Scholar 

  • Shaked S (2011) Multi-continental multimedia model of pollutant intake and application to impacts of global emissions and globally traded goods. Ph.D., University of Michigan

  • Sharma N, Sodhi KK, Kumar M, Singh DK (2021) Heavy metal pollution: insights into chromium eco-toxicity and recent advancement in its remediation. Environ Nanotechnol Monit Manag 15:100388. https://doi.org/10.1016/j.enmm.2020.100388

    Article  CAS  Google Scholar 

  • Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7:1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  • Sheikhupura D, Muhammad A, Rakhshan K, et al (2016) Effect of heavy metals from tannery effluent on the soil and groundwater using multivariate analysis in district Sheikhupura, Pakistan

  • Shen W, Hu Y, Zhang J et al (2021) Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: a case study in irrigation area of the Yellow River. Ecotoxicol Environ Saf 225:112752. https://doi.org/10.1016/j.ecoenv.2021.112752

    Article  CAS  Google Scholar 

  • Sinha R, Kumar R, Sharma P et al (2022) Removal of hexavalent chromium via biochar-based adsorbents: state-of-the-art, challenges, and future perspectives. J Environ Manag 317:115356. https://doi.org/10.1016/j.jenvman.2022.115356

    Article  CAS  Google Scholar 

  • Soil map of the Tomsk region (1989) Novosibirsk: Main Directorate of Geodesy and Cartography [GUGK]

  • Solntsev NA (2001) The study of landscape: selected works. Moscow State University Publisher, Moscow

    Google Scholar 

  • Tarasova N, Makarova A, Fantke P, Shlyakhov P (2018) Estimating chemical footprint: contamination with mercury and its compounds. Pure Appl Chem 90:857–868. https://doi.org/10.1515/pac-2017-1102

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Press, Oxford

    Google Scholar 

  • Tepanosyan G, Sahakyan L, Maghakyan N, Saghatelyan A (2020) Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environ Pollut 261:114210. https://doi.org/10.1016/j.envpol.2020.114210

    Article  CAS  Google Scholar 

  • Tian H, Zhang C, Qi S et al (2021) Concentration and spatial distribution of potentially toxic elements in surface soil of a peak-cluster depression, Babao Town, Yunnan Province, China. Int J Environ Res Public Health 18:3122. https://doi.org/10.3390/ijerph18063122

    Article  CAS  Google Scholar 

  • Tkachev IUA, IUdovich IAE (1975) Statistical processing of geochemical data [Statisticheskaia obrabotka geokhimicheskikh dannykh]. Nauka, Leningrad

    Google Scholar 

  • Trujillo-González JM, Torres-Mora MA, Keesstra S et al (2016a) Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ 553:636–642. https://doi.org/10.1016/j.scitotenv.2016.02.101

    Article  CAS  Google Scholar 

  • Trujillo-gonzález JM, Torres-mora MA, Keesstra S et al (2016b) Science of the Total Environment Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ 553:636–642. https://doi.org/10.1016/j.scitotenv.2016.02.101

    Article  CAS  Google Scholar 

  • Tu C, He T, Liu C et al (2011) Accumulation of trace elements in agricultural topsoil under different geological background. Plant Soil 349:241–251. https://doi.org/10.1007/s11104-011-0866-z

    Article  CAS  Google Scholar 

  • Turbinsky VV, Bortnikova SB (2018) Proportions of arsenic and antimony in biogeochemical provinces as health risk factors. Scientific reviews Health. Risk Anal 3:136. https://doi.org/10.21668/health.risk/2018.3.15

    Article  Google Scholar 

  • Verones F, Hellweg S, Antón A et al (2020a) LC-IMPACT: A regionalized life cycle damage assessment method. J Ind Ecol 24:1201–1219. https://doi.org/10.1111/jiec.13018

    Article  Google Scholar 

  • Verones F, Hellweg S, Antón A et al (2020b) LC-IMPACT: A regionalized life cycle damage assessment method. J Ind Ecol 24. https://doi.org/10.1111/jiec.13018

  • Vinogradov AP (1957) Geochemistry of rare and trace elements in soils [Geokhimiia redkikh i rasseiannykh elementov v pochvakh]. AS USSR

  • Vinogradov AP (1962) Chemical composition of living matter in connection with the chemistry of the Earth’s crust [Srednee soderzhanie khimicheskikh elementov v gornykh porodakh]. Geochemistry 7:555–571

    Google Scholar 

  • Vithanage M, Kumarathilaka P, Oze C et al (2019) Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: a critical review. Environ Int 131:104974. https://doi.org/10.1016/j.envint.2019.104974

    Article  CAS  Google Scholar 

  • Vodyanicky YuN (2008) Heavy metals and metalloids in soils [Geokhimiia redkikh i rasseiannykh elementov v pochvakh]. GNU Soil Science Institute. V.V. Dokuchaeva RAAS, Moscow

  • Walser T, Juraske R, Demou E, Hellweg S (2014) Indoor exposure to toluene from printed matter matters: complementary views from life cycle assessment and risk assessment. https://doi.org/10.1021/es403804z

  • Wang H, Wu Q, Hu W et al (2018) Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China. Environ Pollut 243:1047–1056. https://doi.org/10.1016/j.envpol.2018.09.036

    Article  CAS  Google Scholar 

  • Wang H, Yilihamu Q, Yuan M et al (2020) Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: a comparison of regression and random forest. Ecol Indic 119:106801. https://doi.org/10.1016/j.ecolind.2020.106801

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xia S, Song Z, Jeyakumar P et al (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 49:1027–1078. https://doi.org/10.1080/10643389.2018.1564526

    Article  CAS  Google Scholar 

  • Xiao X, Zhang J, Wang H et al (2020) Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: a global meta-analysis. Sci Total Environ 713:135292. https://doi.org/10.1016/j.scitotenv.2019.135292

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Lu X et al (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068

    Article  CAS  Google Scholar 

  • Zhang H, Yin A, Yang X et al (2021) Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecol Indic 122:107233. https://doi.org/10.1016/j.ecolind.2020.107233

    Article  CAS  Google Scholar 

  • Zhornyak L V. (2009) Ecological and geochemical assessment of the territory of Tomsk on the basis of the data of soil research [Ekologo-geokhimicheskaia otsenka territorii g Tomska po danym izuchenia pochv]. Tomsk Polytechnic University

Download references

Funding

The statistical data processing is supported by State program RF «Science». Project FSWW-0022-2020. The impact assessment with the USEtox model is supported by the RSF grant (N 20-64-47021). The mapping of Cr spatial distribution was carried out within the framework of a grant from the Russian Science Foundation (project No. 22-27-00748).

Author information

Authors and Affiliations

Authors

Contributions

Alexandra I. Belyanovskaya: Conceptualization, Data curation, Writing - original draft, Formal analysis.

Bulat R. Soktoev: Writing - original draft, Formal analysis.

Bertrand Laratte: Conceptualization, Supervision, Methodology.

Elena V. Ageeva: Writing - original draft, Formal analysis.

Natalia V. Baranovskaya: Conceptualization, Supervision.

Natalia P. Korogod: Conceptualization.

Corresponding author

Correspondence to Alexandra Belyanovskaya.

Ethics declarations

Ethics approval

The authors declare that all applicable international, national, and institutional guidelines for the care and use of animals were followed. Sampling of biomaterial was carried out as part of the slaughter of the livestock in a private farm.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Loubet

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyanovskaya, A., Soktoev, B., Laratte, B. et al. Influence of local geological data and geographical parameters to assess regional health impact in LCA. Tomsk oblast’, Russian Federation application case. Environ Sci Pollut Res 29, 87281–87297 (2022). https://doi.org/10.1007/s11356-022-21784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21784-9

Keywords

Navigation