Skip to main content

Solar cooking innovations, their appropriateness, and viability

Abstract

The successful use of solar energy for cooking requires the systems adopted not only to have technical attributes that conveniently address specific cooking requirements but also are socially and economically acceptable to its end-users. When displacing cooking fuels used in developing countries, solar cooking can lead to (i) improved health in children and women, (ii) less local forest degradation, (iii) less local pollution, and (iv) lower contributions to global greenhouse gas emissions. The diverse range of thermal and photovoltaic solar cooking systems available, or under development, in different regions of the world is discussed in the present work. Particular attention is given to the social, cultural, and economic factors that have limited adoption of solar cookers. Technical developments that address these limitations are shown to only be effective when they facilitate traditional ways of cooking particular foods in and at desired times in specific climates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

All data are given in the manuscript.

Abbreviations

A:

Aperture area (m2)

C c :

Capital cost

C p :

Specific heat (Jkg−1 K−1)

e:

Fuel price increase rate

F 1 :

First figure of merit in solar cooker rating

F 2 :

Second figure of merit in solar cooking rating

I:

Incident solar radiation (W/m2)

m:

Mass (kg)

NPV:

Net present value

N m ,a:

Number of meals cooked per year

PBP :

Simple payback period

Pactual :

Solar power available at cooker (W)

P m :

Cost of cooking a single meal

Q:

Net heat gain (J)

R (d, t):

Capital recovery factor for a discount rate d and useful life t

T:

Temperature (°C)

ƞ :

Efficiency (%)

ρ:

Density (kg-m3)

IAP:

Indoor air pollution

GHG:

Greenhouse gas

LHS:

Latent heat storage

PCM:

Phase change material

PV:

Photovoltaic

SHS:

Sensible heat storage

TES:

Thermal energy storage

TIM:

Transparent insulation material

LCA:

Life cycle assessment

PDSC:

Parabolic dish type of solar cooker

HTF:

Heat transfer fluid

References

  • Ali BSM (2000) Design and testing of Sudanese solar box cooker. Renew Energy 21:573–581

    CAS  Article  Google Scholar 

  • Al-Saad MA, Jubran BA (1991) The performance of a low cost clay solar cooker. Renew Energy 1(5/6):617–621

    Article  Google Scholar 

  • Altouni A, Gorjian S, Banakar A (2022) Development and performance evaluation of a photovoltaic powered induction cooker (PV-IC): an approach for promoting clean production in rural areas. Cleaner Engg Tech 6:100373

    Article  Google Scholar 

  • Amerina MA, Pangborn RV, Roessler EB (1965) Principles of sensory evaluation of food. Academic Press, New York

    Google Scholar 

  • Apaolaza-Pagoaga X, Sagade AA, Ruivo CR, Carrillo-Andres A (2021) Performance of solar funnel cookers using intermediate temperature test load under low sun elevation. Sol Energy 225:978–1000

    Article  Google Scholar 

  • Aramesh M, Ghalebani M, Kasaeian A, Zamani H, Lorenzini G, Mahian O, Wongwises S (2019) A review of recent advances in solar cooking technology. Renew Energy 140:419–435

    Article  Google Scholar 

  • Arunachala UC, Kundapur A (2020) Cost-effective solar cookers: a global review. Sol Energy 207:903–916

    Article  Google Scholar 

  • Atmane I, El Moussaoui N, Kassmi K, Deblecker O, Bachiri N (2021a) Development of an innovative cooker (hot plate) with photovoltaic solar energy. J Energy Storage 36:102399

    Article  Google Scholar 

  • Atmane I, El Moussaoui N, Kassmi K, Deblecker O, Bachiri N (2021b). Alternating multi-stage maximum power point tracking controlled parallelled photovoltaic systems for ‘solar cooker’. Int J Circ Theor Appl 49(11):3908–3921

  • Atmane I, Kassmi K, Deblecker O, Bachiri N (2021c) Realization of autonomous heating plates operating with photovoltaic energy and solar batteries. Mat Today: Proceedings 45(8):7408–7414

    CAS  Google Scholar 

  • Bansal M, Saini RP, Khatod DK (2013) Development of cooking sector in rural areas in India- a review. Renew Sust Energy Rev 17:44–53

    Article  Google Scholar 

  • Batchelor S, Brown E, Leary J, Scott N, Alsop A, Leach M (2018a) Solar electric cooking in Africa: where will the transition happen first? Energy Res Social Sci 40:257–272

    Article  Google Scholar 

  • Batchelor S, Talukder MAR, Uddin MR, Mondal SK (2018b) Solar e-cooking: a proposition for solar home system integrated clean cooking. Energies 11:2933–2947

    CAS  Article  Google Scholar 

  • Battocchio C, Bruni F, Nicola GD, Gasperi T, Iucci G, Tofani D, Varesano A, Venditti I (2021) Solar cookers and dryers: environmental sustainability and nutraceutical content in food processing. Foods 10:2326

    CAS  Article  Google Scholar 

  • Bauer G (2016) Evaluation of usage and fuel savings of solar ovens in Nicaragua. Energy Pol 97:250–257

    Article  Google Scholar 

  • Beaumont G, Eiloart T, Robinson P (1997) Ultra low cost solar cookers: design details and field trials in Tanzania. Renewable Energy 10(4):635–640

    Article  Google Scholar 

  • Bhavani S, Chithambaram V, Muthucumaraswamy R, Shanmugan S, Essa FA, Elsheikh AH, Selvaraju P, Janarthanan B (2022) Laplacian tactic for the prediction of the temperature components of solar cooker with logical prediction by fuzzy rules. Sol Energy 236:369–382

    CAS  Article  Google Scholar 

  • Bhavani S, Shanmugan S, Chithambaram V, Essa FAE, et al. (2021) Simulation study on thermal performance of a solar box cooker using nanocomposite for natural Food invention. Environ Sci Pollut Res 1-19. https://doi.org/10.1007/s11356-021-14194-w

  • Bhave AG, Kale CK (2020) Development of a thermal storage type solar cooker for high temperature cooking using solar salt. Sol Energy Mat Sol Cells 208:11039

    Article  CAS  Google Scholar 

  • Biermann E, Grupp M, Palmer R (1999) Solar cooker acceptance in South Africa: results of a comparative field-test. Sol Energy 66(6):401–407

    Article  Google Scholar 

  • Buddhi D, Sahoo LK (1997) Solar cooker with latent heat storage: design and experimental testing. Energy Convers Manage 38(5):493–498

    Article  Google Scholar 

  • Bushnell DL, Sohi M (1992) A modular phase change heat exchanger for a solar oven. Sol Energy 49(4):235–244

    CAS  Article  Google Scholar 

  • Chatelain T, Mauree D, Taylor S, Bouvard O, Fleury J, Burnier L, Schüler A (2019) Solar cooking potential in Switzerland: nodal modelling and optimization. Sol Energy 194:788–803

    Article  Google Scholar 

  • Chowdhury T, Chowdhury H, Hasnat P, Barua A, Islam B (2018). Barriers against the development of solar cooker & its solution. Proc. Int Conf Mech, Indust & Energy Engg, 23rd - 24th December 2018 at: Khulna, Bangladesh, ICMIEE18-149:1–5

  • Coccia G, Nicola GD, Tomassetti S, Pierantozzi M, Chieruzzi M, Torre L (2018) Experimental validation of a high-temperature solar box cooker with a solar salt-based thermal storage unit. Sol Energy 170:1016–1025

    CAS  Article  Google Scholar 

  • Cuce E, Cuce PM (2013) A comprehensive review on solar cookers. Appl Energy 102:1399–1421

    Article  Google Scholar 

  • Cuce PM (2018) Box type solar cookers with sensible thermal energy storage medium: a comparative experimental investigation and thermodynamic analysis. Sol Energy 166:432–440

    CAS  Article  Google Scholar 

  • Dhar S, Sadhu PK, Roy D, Das S (2020) Feasibility study of the solar-powered and induction cooking based mobile food court station in rural area of West Bengal. J Inst Eng. India: Series B 101:181–195

  • Domanski R, El-Sebaii AA, Jaworski M (1995) Cooking during off-sunshine hours using pcms as storage media. Energy 20(7):607–616

    CAS  Article  Google Scholar 

  • Dufo-López R, Zubi G, Fracastoro GV (2012) Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions. Appl Energy 91:255–262

    Article  Google Scholar 

  • Funk PA (2000) Evaluating the international standard procedure for testing solar cookers and reporting performance. Sol Energy 68(1):1–7

    Article  Google Scholar 

  • Garg HP (1988) Advances in solar energy technology, Vol- 3, Heating, Agricultural and Photovoltaic Applications of Solar Energy. D. Reidel Publishing Company, Netherlands

    Google Scholar 

  • Garg HP, Dayal M, Furlan G, Sayigh AAM (1986) Physics and technology of solar energy. Vol-1: Solar Thermal Applications, D. Reidel Publishing Company, Netherlands. 1:475–16

  • Gokul V, Dhinesh S, Kalaiyarasu K, Kalidasan B, Ravikumar M (2021) A comprehensive review on solar cooker tracking techniques for performance enhancement. In IOP Conference Series: Mat Sci and Engg 1059:012065

    Article  Google Scholar 

  • Guimbretiere G, Lefevre A, Barbot S, Laurent F (2022) Study of the thermal dynamics of solar cookers on reunion island: techniques and uses at household and communal scales. Consolfood 2022- Int Conf Advan Sol Ther Food Processing, held at Faro-Portugal, 24th – 26th January, ⟨hal-03559562⟩:11–17

  • Gupta M, Kumar S, Katyal P (2015) Experimental investigation of indirect solar cooker using evacuated tube collector with dual thermal storage unit. Int J Therm Technol 5:200–210

    Article  Google Scholar 

  • Halacy B, Halacy DS (1978) Cooking with the Sun. Morning Sun Press, Lafayette, USA

    Google Scholar 

  • Hasan RMM, Islam N, Khan MA, Amin SS, Azad AKM (2020) Improvement of energy efficiency and effectiveness of cooking in solar electric slow cooker for tropical countries. 2020 IEEE Region 10 Conf (TENCON-2020): 123–127. https://doi.org/10.1109/TENCON50793.2020.9293907

  • Healey HM (2007) Economics of solar. Distributed Gen & Altern Energy J 22:35–49

    Article  Google Scholar 

  • Heilig GK (1993) Lifestyles and energy use in human food chains. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-93-014

  • Herez A, Ramadan M, Khaled M (2018) Review on solar cooker systems: economic and environmental study for different Lebanese scenarios. Renew Sustain Energy Rev 81:421–432

    Article  Google Scholar 

  • Hernández-Luna G, Huelsz G (2008) A solar oven for intertropical zones: evaluation of the cooking process. Energy Convers Manage 49:3622–3626

    Article  Google Scholar 

  • Hosonuma N, Herold M, De-Sy V, De-Fries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7(4):044009

    Article  Google Scholar 

  • Hui YH (2006) Handbook of food science, technology, and engineering. Published by CRC press, Taylor and Francis Inc., USA

  • Hussein HMS, El-Ghetany HH, Nada SA (2008) Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manage 49:2237–2246

    Article  Google Scholar 

  • Ibrahim SMA, El-Reidy MK (2007) The performance of a solar cooker in Egypt. Energy Source 15:415–431

    Article  Google Scholar 

  • IEA (2021) Countries Fuels and Technologies, Annual report of 2021, 41–62

  • Iessa L, De Vries YA, Swinkels CE, Smits M, Butijn CAA (2017) What’s cooking? Unverified assumptions, overlooking of local needs and pro-solution biases in the solar cooking literature. Energy Res & Social Sci 28:98–108

    Article  Google Scholar 

  • Indora S, Kandpal SC (2019) A framework for analyzing impact of potential financial/fiscal incentives for promoting institutional solar cooking in India. Renew Energy 143:1531–1543

    Article  Google Scholar 

  • Indora S, Kandpal TC (2018) Institutional cooking with solar energy: a review. Renew Sustain Energy Rev 84:131–154

    Article  Google Scholar 

  • Irfan M, Zhao Z, Ahmad M, Mukeshimana MC (2019) Solar energy development in Pakistan: barriers and policy recommendations. Sustainability 11:1206–1224

    Article  Google Scholar 

  • International Energy Agency (2006) Barriers to technology diffusion: the case of solar thermal technologies Cédric Philibert, COM/ENV/EPOC/IEA/SLT (2006)9, Copyright OECD/IEA, 2006, Head of Publications Service, OECD/IEA, 2 rue André Pascal, 75775 Paris Cedex 16, France,  9:5–29

  • Joshi SB, Jani AR (2013) Photovoltaic and thermal hybridized solar cooker. ISRN Renew Energy 1–5:746189

    Google Scholar 

  • Joshi SB, Jani AR (2015) Design Development and testing of a small scale hybrid solar cooker. Sol Energy 122:148–155

    Article  Google Scholar 

  • Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food & Agri 89(4):549–554

    CAS  Article  Google Scholar 

  • Kandpal TC, Mathur SS (1986) The economics of box-type solar cookers. Energy Convers Manage 26(2):233–235

    Article  Google Scholar 

  • Keith A, Brown NJ, Zhou JL (2019) The feasibility of a collapsible parabolic solar cooker incorporating phase change materials. Renew Energy Focus 30:58–70

    Article  Google Scholar 

  • Khalifa AMA, Taha MMA, Akyurt M (1984) Utilization of solar energy for cooking during pilgrimage (Hajj). Sol & Wind Tech 1(2):75–80

    Article  Google Scholar 

  • Khatri R, Goyal R, Sharma RK (2021) Advances in the developments of solar cooker for sustainable development: a comprehensive review. Renew Sustain Energy Rev 145:111166

    Article  Google Scholar 

  • Khatri R, Goyal R, Sharma RK (2022) Solar cooking in India: implementation, barriers & improvement aspects. Mat Today Proceedings. https://doi.org/10.1016/j.matpr.2022.03.136

  • Lecuona A, Nogueira J, Ventas R, Rodríguez-Hidalgo M, Legrand M (2013) Solar cooker of the portable parabolic type incorporating heat storage based on PCM. Appl Energy 111:1136–1146

    CAS  Article  Google Scholar 

  • Liyew KW, Habtu NG, Louvet Y, Guta DD, Jordan U (2021) Technical design, costs, and greenhouse gas emissions of solar Injera baking stoves. Renew Sust Energy Rev 149:111392

    Article  Google Scholar 

  • Lombardi F, Riva F, Sacchi M, Colombo E (2019) Enabling combined access to electricity and clean cooking with PV microgrids: new evidences from a high-resolution model of cooking loads. Energy for Sust Dev 49:78–88

    Article  Google Scholar 

  • Lyman B (2012) A psychology of food: More than a matter of taste. Springer-Verlag, Netherlands

    Google Scholar 

  • MacClancy J (2014) Solar cooking. Food, Cult & Society 17:301–318

    Article  Google Scholar 

  • Mahapatra AK, Mitchell CP (1999) Biofuel consumption, deforestation, and farm level tree growing in rural India. Biomass Bioenerg 17(4):291–303

    CAS  Article  Google Scholar 

  • Mawire A, Simelane SM, Abedigamba PO (2021) Energetic and exergetic performance comparison of three solar cookers for developing countries. Environ Develop Sustain 1-28. https://doi.org/10.1007/s10668-021-01255-w

  • Mekonnen BA, Liyew KW, Tigabu MT (2020) Solar cooking in Ethiopia: experimental testing and performance evaluation of SK14 solar cooker. Case Stud Ther Engg 22:100766

    Article  Google Scholar 

  • Mendoza JMF, Gallego-Schmid A, Rivera XCS, Rieradevall J, Azapagic A (2019) Sustainability assessment of home-made solar cookers for use in developed countries. Sci Total Environ 648:184–196

    CAS  Article  Google Scholar 

  • Milikias E, Bekele A, Venkatachalam C (2020) Performance investigation of improved box-type solar cooker with sensible thermal energy storage. Int J Sust Engg 14(3):1–10

    Google Scholar 

  • MNRE (2019) Ministry of New and Renewable Energy Annual Report 2017–18. 32–41

  • Mohamad MA, EIghetany HH, Abdeidayem A (1988) Design, construction and field test of hot -box solar cookers for African Sahel region. Renew Energy 14:49

    Article  Google Scholar 

  • Mostafaeipour A, Behzadian M, Fakhrzad MB, Techato K, Najafi F (2021) A strategic model to identify the factors and risks of solar cooker manufacturing and use: a case study of Razavi Khorasan. Iran Energy Strat Rev 33:100587

    Article  Google Scholar 

  • Moussaoui NE, Talbi S, Atmane I, Kassmi K, Schwarzer K, Chayeb H, Bachiri N (2020) Feasibility of a new design of a parabolic trough solar thermal cooker (PSTC). Sol Energy 201:866–871

    Article  Google Scholar 

  • Mullick SC, Kandpal TC, Kumar S (1991) Thermal test procedure for a paraboloid concentrator solar cooker. Sol Energy 46(3):139–144

    Article  Google Scholar 

  • Mullick SC, Kandpal TC, Saxena AK (1987) Thermal test procedure for box-type solar cookers. Sol Energy 39(4):353–360

    Article  Google Scholar 

  • Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income sub-Saharan African countries: the relevance of improving energy use efficiency. Sust Prod Consumption 30:396–412

    Article  Google Scholar 

  • Mussard M, Gueno A, Nydal OJ (2013) Experimental study of solar cooking using heat storage in comparison with direct heating. Sol Energy 98:375–383

    Article  Google Scholar 

  • Nahar NM (2003) Performance and testing of a hot box storage solar cooker. Energy Convers Manage 44:1323–1331

    Article  Google Scholar 

  • Nahar NM, Gupta JP (1991) Energy-conservation potential for solar cookers in arid zones of India. Energy 16(6):965–969

    Article  Google Scholar 

  • Nandwani SS (1988) Experimental and theoretical analysis of a simple solar oven in the climate of Costa Rica-1. Sol Wind Tech 5(2):159–170

    Article  Google Scholar 

  • Newton B, Cowie S, Rijks D, Banks J, Brindley H, Marsham JH (2014) Solar cooking in the Sahel. Amer Meteoro Soci 95(9):1325–1328

  • Norton B (1992) Solar energy thermal technology. Published by Springer-Verlag, New York, 71–80

  • Omara AA, Abuelnuor AA, Mohammed HA, Habibi D, Younis O (2020) Improving solar cooker performance using phase change materials: a comprehensive review. Sol Energy 207:539–563

    CAS  Article  Google Scholar 

  • Onwe CA, Rodley D, Reynolds S (2019) Modelling and simulation tool for off-grid PV-hydrogen energy system. Int J Sust Engg 39:1–20

    Google Scholar 

  • Onwe CA, Rodley D, Reynolds S (2020) Modelling and simulation tool for off-grid PV-hydrogen energy system. Int J Sust Energy 39:1–20

    Article  Google Scholar 

  • Osei M, Staveland O, McGowan S, Unger JB et al (2021) Phase change thermal storage: cooking with more power and versatility. Sol Energy 220:1065–1073

    Article  Google Scholar 

  • Otte PP (2014a) Warming up to solar cooking- a comparative study on motivations and the adoption of institutional solar cookers in developing countries. Energy Proc 57:1632–1641

    Article  Google Scholar 

  • Otte PP (2014b) Solar cooking in Mozambique- an investigation of end-user’s needs for the design of solar cookers. Energy Pol 74:366–375

    Article  Google Scholar 

  • Oturanc G, Ozbalta N, Gungor A (2002) Performance analysis of a solar cooker in Turkey. Int J Energy Res 26:105–111

    Article  Google Scholar 

  • Pachauri S (2007) An energy analysis of household consumption. Springer, Netherlands

    Google Scholar 

  • Panwar LN, Kaushik SC, Kothari S (2012) State of the art of solar cooking: an overview. Renew Sustain Energy Rev 16:3776–3785

    Article  Google Scholar 

  • Parikh J (2011) Hardships and health impacts on women due to traditional cooking fuels: a case study of Himachal Pradesh. India Energy Pol 39(12):7587–7594

    Article  Google Scholar 

  • Prabu AS, Chithambaram V, Bennet MA et al (2021) Microcontroller PIC 16F877A standard based on solar cooker using PV—evacuated tubes with an extension of heat integrated energy system. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-16863-2

    Article  Google Scholar 

  • Prasanna UR, Umanand L (2011) Optimization and design of energy transport system for solar cooking application. Appl Energy 88:242–251

    Article  Google Scholar 

  • Ramadan MRI, Aboul-Enien S, El-Sebaii AA (1988) A model of an improved low cost-indoor solar cooker in Tanta. Sol Wind Tech 5(4):387–393

    Article  Google Scholar 

  • Rao MN, Reddy BS (2007) Variations in energy use by Indian households: an analysis of micro level data. Energy 32(2):143–153

    Article  Google Scholar 

  • Riva F, Rocco MV, Gardumi F, Bonamini G, Colombo E (2017) Design and performance evaluation of solar cookers for developing countries: the case of Mutoyi Burundi. Int J Energy Research 41(14):2206–2220

    Article  Google Scholar 

  • Rivera XCS, Topriska E, Kolokotroni M, Azapagic A (2018) Environmental sustainability of renewable hydrogen in comparison with conventional cooking fuels. J Cleaner Prod 196:863–879

    Article  CAS  Google Scholar 

  • Saini G, Singh H, Saini K, Yadav A (2016) Experimental investigation of solar cooker during sunshine and off-sunshine hours using thermal energy storage unit based on parabolic trough collector. Int J Amb Energy 37(6):597–608

    CAS  Article  Google Scholar 

  • Saxena A, Agarwal N (2018) Performance characteristics of a new hybrid solar cooker with air duct. Sol Energy 159:628–637

    Article  Google Scholar 

  • Saxena A, Cuce E, Tiwari GN, Kumar A (2020) Design and thermal performance investigation of a box cooker with flexible solar collector tubes: an experimental research. Energy 206:118144

    CAS  Article  Google Scholar 

  • Saxena A, Goel V, Srivastava S (2012) Performance testing of a solar box cooker provided with sensible storage material on the surface of absorbing plate. Int J Renew Energy Tech 3(2):165–173

    Article  Google Scholar 

  • Saxena A, Karakilcik M (2017) Performance evaluation of a solar cooker with low cost heat storage material. Int J Sust Green Energy 6(4):57–63

    CAS  Article  Google Scholar 

  • Saxena A, Varun, Pandey SP, Srivastav G (2011) A thermodynamic review on solar box type cookers. Renew Sustain Energy Rev 15:3301–3318

    Article  Google Scholar 

  • Senthil R, Cheralathan M (2019) Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. J Energy Storage 25:100841

    Article  Google Scholar 

  • Sharma V, Dash M (2022) Household energy use pattern in rural India: a path towards sustainable development. Environ Challenges 6:100404

    Article  Google Scholar 

  • Sharma SD, Buddhi D, Sawhney RL, Sharma A (2000) Design, development, and performance evaluation of a latent heat storage unit for evening cooking in a solar cooker. Energy Convers Manage 41:1497–1508

    Article  Google Scholar 

  • Sharma D, Ravindra K, Kaur M, Prinja S, Mor S (2020) Cost evaluation of different household fuels and identification of the barriers for the choice of clean cooking fuels in India. Sust Cities Society 52:101825

    Article  Google Scholar 

  • Siddiqua S, Firuz S, Nur BM, Shaon RJ, Chowdhury SJ, Azad A (2016) Development of double burner smart electric stove powered by solar photovoltaic energy. 2016 IEEE Global Human Tech Conf (GHTC). USA. 451–458. https://doi.org/10.1109/GHTC.2016.7857319

  • Singh HR, Sharma D, Goyal R, Sharma DK, Chadha S (2021a) Study on some aspects of adoption of solar cooking system: a review. Mat Today: Proceedings 47(11):1–7

    CAS  Google Scholar 

  • Singh HR, Sharma D, Sharma DK, Chadha S (2021b) Low-cost novel designed receiver heat exchanger for household solarized cooking system: development and operationalization. Mat Today: Proceedings 47(11):3018–3023

  • Singh HR, Sharma D, Soni SL (2021) Dissemination of sustainable cooking: a detailed review on solar cooking system. IOP Conf Series: Mat Sci Engg 1127:012011–7

    Article  Google Scholar 

  • Singh HR, Sharma D, Soni SL (2021d) A new methodology to find out cooking energy needs for a rural household. Int J Environ Sust Dev 20(3/4):255–263

    Article  Google Scholar 

  • Singh OK (2021) Development of a solar cooking system suitable for indoor cooking and its exergy and enviroeconomic analyses. Sol Energy 217:223–234

    Article  Google Scholar 

  • Solanki CS (2008) Renewable energy technologies, published by PHI, India

  • Solanki SC (2018) Dawn of solar PV cooking. Akshay Urja 3:22–26

    Google Scholar 

  • Stutz B, Le Pierres N, Kuznik F, Johannes K (2017) Storage of thermal solar energy. C R Phys 18:401–414

    CAS  Article  Google Scholar 

  • Suharta H, Sena PD, Sayigh AM, Komarodin (1999) The social acceptability of solar cooking in Indonesia. Renew Energy 16:1151–1154

    Article  Google Scholar 

  • Swarupa ML, Kumar EV, Sreelatha K (2021) Modeling and simulation of solar PV modules based inverter in MATLAB-SIMULINK for domestic cooking. Mat Today: Proceedings 38:3414–3423

    Google Scholar 

  • Talbi S, Atmane I, Elmoussaoui N, Kassmi K, Deblecker O (2019) Feasibility of a box-type solar cooker powered by photovoltaic energy. 7th Int Renew Sustain Energy Conf (IRSEC), 1–4. https://doi.org/10.1109/IRSEC48032.2019.9078275

  • Thamizharasu P, Shanmugan S, Sivakumar S, Pruncu CI et al (2021) Revealing an OSELM based on traversal tree for higher energy adaptive control using an efficient solar box cooker. Sol Energy 218:320–333

    CAS  Article  Google Scholar 

  • Topriska E, Kolokotroni M, Dehouche Z, Wilson E (2015) Solar hydrogen system for cooking applications: experimental and numerical study. Renew Energy 83:717–728

    CAS  Article  Google Scholar 

  • Valizadeh H, Mofatteh MS (1994) Fast response storage type solar cooker. Renew Energy 5:495–501

    Article  Google Scholar 

  • Vanschoenwinkel J, Lizin S, Swinnen G, Azadi H, Passel SV (2014) Solar cooking in Senegalese villages: an application, of best–worst scaling. Energy Pol 67:447–458

    Article  Google Scholar 

  • Verma S, Banerjee S, Das R (2022) A fully analytical model of a box solar cooker with sensible thermal storage. Sol Energy 233:531–542

    Article  Google Scholar 

  • Web source- http://solarcooking.org/images/scr/mar06/photov.jpg

  • Web source- https://rudrasolarenergy.com/product.html

  • Web source- http://indiasolar.com/SOLCOOKMFR.htm

  • Web source- https://solarcooking.fandom.com/wiki/Category:Fresnel_solar_cooker_designs?file=Mueller_Solartechnik_Fresnel_test_cooker%252C_1–2–13.jpg

  • Wimmer R, Kang MJ, Pokpong C, Mahdavi A (2017) Analysis of user needs for solar cooker acceptance. In: Matsumoto M et al (eds) Sustainability Through Innovation in Product Life Cycle Design. Springer, Japan, pp 151–165

    Chapter  Google Scholar 

  • Wimmer R, Pokpong C, Kang MJ, Mahdavi A (2014) Analysis of user needs for solar cooking stove acceptance. Sustain Energy & Build: Research Advances: (SEB-14) 3:43–51 (seb14s-018)

  • Wyllie JOY, Essah E, Ofetotse E (2018) Barriers of solar energy uptake and the potential for mitigation solutions in Barbados. Renew Sust Energy Rev 91:935–949

    Article  Google Scholar 

  • Xu Z, Suna DW, Zhanga Z, Zhu Z (2015) Research developments in methods to reduce carbon footprint of cooking operations: a review. Trends Food Sci Technol 44:49–59

    CAS  Article  Google Scholar 

  • Yadav V, Kumar Y, Agrawal H, Yadav A (2017) Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Aust J Mech Engg 15:93–102

    Article  Google Scholar 

  • Yettou F, Azoui B, Malek A, Gama A, Panwar NL (2014) Solar cooker realizations in actual use: an overview. Renew Sust Energy Rev 37:288–306

    Article  Google Scholar 

  • Yuksel N, Arabacıgıl B, Avcı A (2012) The thermal analysis of paraffin wax in a box-type solar cooker. J Renew Sust Energy 4:063126–063129

    Article  CAS  Google Scholar 

  • Zhang H, Baeyens J, Cáceres G, Degrève J, Lv Y (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy & Comb Sci 53:1–40

    Article  Google Scholar 

  • Zhao Y, Zheng H, Sun B, Li C, Wu Y (2018) Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator. Sol Energy 174:263–272

    Article  Google Scholar 

Download references

Funding

The authors are thankful for the kind support of the Mechanical Engineering Department, School of Engineering, Devbhoomi Uttarakhand University, Dehradun, India. Tyndall National Institute and Technological University Dublin, Ireland, and MaREI, the SFI Research Centre for Energy, Climate and Marine, supported this research [Grant No. 12/RC/2302_P2].

Author information

Authors and Affiliations

Authors

Contributions

Abhishek Saxena: concept, writing, data curation, and review and editing.

Brian Norton: writing, formal analysis, and review and editing.

Varun Goel: formal analysis and review and editing.

Desh Bandhu Singh: formal analysis and review and editing.

Corresponding author

Correspondence to Abhishek Saxena.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 13

Table 13 Specification of solar cookers* in Table 11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Norton, B., Goel, V. et al. Solar cooking innovations, their appropriateness, and viability. Environ Sci Pollut Res 29, 58537–58560 (2022). https://doi.org/10.1007/s11356-022-21670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21670-4

Keywords

  • Solar cooking
  • Design selection
  • Social acceptability, Cooking fuels