Skip to main content
Log in

Direct degradation of methylene blue by unactivated peroxymonosulfate: reaction parameters, kinetics, and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Advanced oxidation processes (AOPs) are efficient methods for water purification. However, there are few studies on using peroxymonosulfate (PMS) to remove pollutants directly. In this study, about 76% of methylene blue (MB) was removed by PMS directly within 180 min through a non-radical pathway, verified by scavenging tests, electron paramagnetic resonance and kinetic calculations. Additionally, the effects of PMS dosage, MB concentration, temperature, initial pH and competitive anions were determined. High PMS dosage, temperature and pH promoted MB degradation (from 76 to 98%) while MB concentration showed no effect on MB removal. Besides, MB degradation followed pseudo-first-order kinetic with rate constants of 0.0082 to 0.3912 min−1. The second-order rate constant for PMS reaction with MB was 0.08 M−1 s−1 at pH 3–6, but increased dramatically to 4.68 M−1 s−1 at pH 10.50. Chlorine could be catalysed by PMS at high concentration Cl and degradation efficiency reached 98% within 90 min. High concentration of bicarbonate accelerated MB removal due to the high pH value while humic acid showed a marginal effect on MB degradation. Furthermore, TOC removal rate of MB in the presence of chloride reached 45%, whereas PMS alone caused almost no mineralisation. This study provides new insights into pollutant removal and an additional strategy for water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Ahmad M, Teel A, Watts R (2013) Mechanism of persulfate activation by phenols. Environ Sci Technol 47:5864–5871

    Article  CAS  Google Scholar 

  • Bohme K, Brauer H (1992) Generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions. Inorg Chem 31:3468–3471

    Article  Google Scholar 

  • Chen L, Zuo X, Yang S, Cai T, Ding D (2019a) Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate. Chem Eng J 359:373–384

    Article  CAS  Google Scholar 

  • Chen X, Oh W, Lim T (2018) Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms. Chem Eng J 354:941–976

    Article  CAS  Google Scholar 

  • Chen X, Yang B, Oleszczuk P, Gao Y, Yuan X, Ling W, Waigi M (2019b) Vanadium oxide activates persulfate for degradation of polycyclic aromatic hydrocarbons in aqueous system. Chem Eng J 364:79–88

    Article  CAS  Google Scholar 

  • Chen Z, Wan Q, Wen G, Luo X, Xu X, Wang J, Li K, Huang T, Ma J (2021) Effect of borate buffer on organics degradation with unactivated peroxymonosulfate: influencing factors and mechanisms. Sep Purif Technol 256:117841

    Article  CAS  Google Scholar 

  • Cheng X, Liang H, Ding A, Qu F, Shao S, Liu B, Wang H, Wu D, Li G (2016) Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: membrane fouling mitigation, prediction and mechanism. J Membr Sci 505(1):15–25

    Article  CAS  Google Scholar 

  • Connick R, Zhang Y, Lee S, Adamic P (1995) Kinetics and mechanism of the oxidation of HSO3- by O2. 1. The Uncatalyzed Reaction Inorganic Chemistry 34:4543–4553

    Article  CAS  Google Scholar 

  • Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res 42(1–2):13–51

    Article  CAS  Google Scholar 

  • Ding D, Liu C, Ji Y, Yang Q, Chen L, Jiang C, Cai T (2017) Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem Eng J 308:330–339

    Article  CAS  Google Scholar 

  • Ding J, Nie H, Wang S, Chen Y, Wan Y, Wang J, Xiao H, Yue S, Ma J, Xie P (2021) Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: performance, mechanism, and disinfection by-product formation. Water Res 189:116605

    Article  CAS  Google Scholar 

  • Espinosa J, Manickam-Periyaraman P, Bernat-Quesada F, Sivanesan S, Álvaro M, García H, Navalón S (2019) Engineering of activated carbon surface to enhance the catalytic activity of supported cobalt oxide nanoparticles in peroxymonosulfate activation. Appl Catal B 249:42–53

    Article  CAS  Google Scholar 

  • Feng M, Baum J, Nesnas N, Lee Y, Huang C, Sharma V (2019) Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(VI): kinetics and mechanistic insight into SO2 extrusion. Environ Sci Technol 53(5):2695–2704

    Article  CAS  Google Scholar 

  • Guan Y, Ma J, Ren Y, Liu Y, Xiao J, Lin L, Zhang C (2013) Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res 47(14):5431–5438

    Article  CAS  Google Scholar 

  • He X, Mzeyk S, Michael I, Fatta-Kassinos D, Dionysiou D (2014) Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation. J Hazard Mater 279:375–383

    Article  CAS  Google Scholar 

  • Huang D, Wang T, Zhu K, Zhao S, Shi Y, Ye M, Wang C, Jia H (2019) Low-molecular-weight organic acids impede the degradation of naphthol in iron oxides/persulfate system: Implications for research experiments in pure conditions. Chemosphere 225:1–8

    Article  CAS  Google Scholar 

  • Li C, Wang Y, Chen C, Fu X, Cui S, Lu J, Liu H, Li W (2019) Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways. Sci Total Environ 664:133–139

    Article  CAS  Google Scholar 

  • Liao X, Cao J, Hu Y, Zhang C, Hu L (2021) Mechanism of unactivated peroxymonosulfate-induced degradation of methyl parathion: kinetics and transformation pathway. Chemosphere 284:131332

    Article  CAS  Google Scholar 

  • Long X, Yang S, Qiu X, Ding D, Feng C, Chen R, Tan J, Wang X, Chen N, Lei Q (2021) Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles. Chem Eng J 404:127052

    Article  CAS  Google Scholar 

  • Lu J, Ji Y, Chovelon J, Lu J (2021) Fluoroquinolone antibiotics sensitized photodegradation of isoproturon. Water Res 198:117136

    Article  CAS  Google Scholar 

  • Mohamed F, Allah P, Mehdi A, Baseem M (2011) Photoremoval of Malachite Green (MG) using advanced oxidation process. Res J Chem Environ 15(3):65–70

    CAS  Google Scholar 

  • Monteagudo J, El-Taliawy H, Duran A, Caro G, Bester K (2018) Sono-activated persulfate oxidation of diclofenac: degradation, kinetics, pathway and contribution of the different radicals involved. J Hazard Mater 357:457–465

    Article  CAS  Google Scholar 

  • Mussa Z, Othman M, Abdullah M, Nordin N (2013) Decolorization of landfill leachate using electrochemical technique. Int J Chem Sci 11(4):1636–1646

    CAS  Google Scholar 

  • Javier F, Solís R (2018) Chloride promoted oxidation of tritosulfuron by peroxymonosulfate. Chem Eng J 349:728–736

    Article  Google Scholar 

  • Ji Y, Lu J, Wang L, Jiang M, Yang Y, Yang P, Zhou L, Ferronato C, Chovelon J (2018) Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment. Water Res 147:82–90

    Article  CAS  Google Scholar 

  • Pang Y, Tong Z, Tang L, Liu Y, Luo K (2018) Effect of humic acid on the degradation of methylene blue by peroxymonosulfate. Open Chem 16(1):401–406

    Article  CAS  Google Scholar 

  • Peng Q, Ding Y, Zhu L, Zhang G, Tang H (2018) Fast and complete degradation of norfloxacin by using Fe/Fe3C@NG as a bifunctional catalyst for activating peroxymonosulfate. Sep Purif Technol 202:307–317

    Article  CAS  Google Scholar 

  • Qi C, Liu X, Li Y, Li C, Ma J, Li X, Zhang H (2017) Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfate. J Hazard Mater 328:98–107

    Article  CAS  Google Scholar 

  • Qi C, Liu X, Ma J, Lin C, Li X, Zhang H (2016) Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. Chemosphere 151:280–288

    Article  CAS  Google Scholar 

  • Qiang Z, Adams C (2004) Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ Sci Technol 38:1435–1444

    Article  CAS  Google Scholar 

  • Shimizu N, Ogino C, Dadjour M, Murata T (2007) Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrason Sonochem 14:184–190

    Article  CAS  Google Scholar 

  • Song W, Li J, Fu C, Wang Z, Zhang X, Yang J, William H, Gao L (2019) Kinetics and pathway of atrazine degradation by a novel method: persulfate coupled with dithionite. Chem Eng J 373:803–813

    Article  CAS  Google Scholar 

  • Sun M, Huang W, Cheng H, Ma J, Kong Y, Komarneni S (2019) Degradation of dye in wastewater by homogeneous Fe(VI)/NaHSO3 system. Chemosphere 228:595–601

    Article  CAS  Google Scholar 

  • Sun Y, Xie H, Zhou C, Wu Y, Pu M, Niu J (2021) The role of carbonate in sulfamethoxazole degradation by peroxymonosulfate without catalyst and the generation of carbonate radicals. J Hazard Mater 398:122827

    Article  Google Scholar 

  • Tan C, Gao N, Deng Y, Li L, Deng J, Zhou S (2015) Kinetics oxidation of antipyrine in heat-activated persulfate. Desalin Water Treat 53(1):263–271

    Article  CAS  Google Scholar 

  • Wang J, Duan X, Gao J, Shen Y, Feng X, Yu Z, Tan X, Liu S, Wang S (2020) Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants. Water Res 185:116244

    Article  CAS  Google Scholar 

  • Wang Z, Yuan R, Guo Y, Xu L, Liu J (2011) Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis. J Hazard Mater 190(1–3):1083–1087

    Article  CAS  Google Scholar 

  • Wu S, Liu H, Yang C, Li X, Lin Y, Yin K, Sun J, Teng Q, Du C, Zhong Y (2020) High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chem Eng J 392:123683

    Article  CAS  Google Scholar 

  • Wu S, Shen L, Lin Y, Yin K, Yang C (2021) Sulfite-based advanced oxidation and reduction processes for water treatment. Chem Eng J 414:128872

    Article  CAS  Google Scholar 

  • Wu S, Yang C, Lin Y, Cheng J (2022) Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon. J Environ Sci 115:330–340

    Article  Google Scholar 

  • Xie P, Ma J, Liu W, Zhou J, Yue S, Li X, Wisner M, Fang J (2015) Removal of 2-MIB and geosmin using UV/persulfate: contribution of hydroxyl and sulfate radicals. Water Res 69:223–233

    Article  CAS  Google Scholar 

  • Xu H, Meng L, Zhao X, Chen J, Lu J, Chovelon J (2021) Accelerated oxidation of the emerging brominated flame retardant tetrabromobisphenol S by unactivated peroxymonosulfate: the role of bromine catalysis and formation of disinfection byproducts. Water Res 204:117584

    Article  CAS  Google Scholar 

  • Yang Y, Banerjee G, Brudvig G, Kim J, Pignatello J (2018a) Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environ Sci Technol 52(10):5911–5919

    Article  CAS  Google Scholar 

  • Yang X, Ding X, Zhou L, Zhao Q, Ji Y, Wang X, Chovelon J, Xiu G (2021a) Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism. Chemosphere 263:128194

    Article  CAS  Google Scholar 

  • Yang F, Huang Y, Fang C, Xue Y, Ai L, Liu J, Wang Z (2018b) Peroxymonosulfate/base process in saline wastewater treatment: the fight between alkalinity and chloride ions. Chemosphere 199:84–88

    Article  CAS  Google Scholar 

  • Yang B, Luo Q, Li Q, Meng Y, Li L, Liu Y (2021b) Selective oxidation and direct decolorization of cationic dyes by persulfate without activation. Water Sci Technol 83(11):2744–2752

    Article  CAS  Google Scholar 

  • Yao T, Wang J, Xue Y, Yu W, Gao Q, Ferreira L, Ren K, Ji J (2019) A photodynamic antibacteria spray-coating based on the host-guest immobilization of the photosensitizer methylene blue. J Mater Chem B 7(33):5089–5095

    Article  CAS  Google Scholar 

  • Yuan R, Ramjaun S, Wang Z, Liu J (2011) Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179

    Article  CAS  Google Scholar 

  • Zhou H, Lai L, Wan Y, He Y, Yao G, Lai B (2020a) Molybdenum disulfate(MoS2): a versatile activation of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem Eng J 384:123264

    Article  CAS  Google Scholar 

  • Zhou Y, Gao Y, Jian J, Shen Y, Pang S, Wang Z, Duan J, Guo Q, Guan C, Ma J (2020b) Transformation of tetracycline antibiotics during water treatment with unactivated peroxymonosulfate. Chem Eng J 379:122378

    Article  CAS  Google Scholar 

  • Zhou Y, Jiang J, Gao Y, Pang S, Yang Y, Ma J, Gu J, Li J, Wang Z, Wang L, Yuan L, Yang Y (2017) Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen. Water Res 125:209–218

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Military Standard Research Project of China (20CH0612) and Dazhangxing Project of Naval Medical Center of PLA (21M0601).

Author information

Authors and Affiliations

Authors

Contributions

Xu Zuo: conceptualization, investigation, writing—original draft. Jianxin Nie: writing—review and editing. Beier Jiang: editing. Aijun Jiang: methodology. Shiyang Zou: editing and supervision. Junrong Wu: supervision. Bingquan Ding: investigation. Xuehui Wang: validation. Yang Liu: investigation.

Corresponding author

Correspondence to Shiyang Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

The authors all agree to participate in the paper.

Consent to publish

The authors all agree that the paper is published in the journal.

Additional information

Responsible Editor: Ricardo A. Torres-Palma

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4594 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, X., Nie, J., Jiang, B. et al. Direct degradation of methylene blue by unactivated peroxymonosulfate: reaction parameters, kinetics, and mechanism. Environ Sci Pollut Res 29, 75597–75608 (2022). https://doi.org/10.1007/s11356-022-21197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21197-8

Keywords

Navigation