Skip to main content
Log in

Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The efficient and rapid removal of organic dyes from wastewater remains a complex and challenging task. In this study, UiO-66-NH2 was prepared by solvothermal synthesis, and then, UiO-66-NS was prepared by compounding l-cysteine with UiO-66-NH2 via the Ugi reaction for the efficient removal of methyl orange. UiO-66-NS was prepared by the addition of 1 mmol l-cysteine and showed good adsorption of methyl orange with 92.00% removal. Pseudo-second-order kinetics and Langmuir isotherms more accurately described the adsorption process of UiO-66-NS on methyl orange, which indicated that the adsorption process was dominated by monolayer adsorption of chemical reactions, and the maximum adsorption amounts of UiO-66-NS on methyl orange were 242.72 mg/g at 298 K. In addition, UiO-66-NS exhibited ultrahigh stability in acidic, neutral, and alkaline media (pH = 3–10), but its adsorption of methyl orange after 5 cycles was only 59.53% of the maximum adsorption amount. The adsorption mechanism is primarily electrostatic adsorption of UiO-66-NS with methyl orange, hydrogen bonding, and π-π interactions. This atomically economical Ugi multicomponent reaction provides new ideas for the preparation of structurally designable adsorbents with excellent performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References s

  • Aghili F, Ghoreyshi AA et al (2021) Introducing gel-based UiO-66-NH2 into polyamide matrix for preparation of new super hydrophilic membrane with superior performance in dyeing wastewater treatment. J Environ Chem Eng 9(4):105484

    Article  CAS  Google Scholar 

  • Aknin K, Gauriot M et al (2012) Squaric acid is a suitable building-block in 4C-Ugi reaction: access to original bivalent compounds. Tetrahedron Lett 53(4):458–461

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M et al (2018) Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: Kinetics, isotherm and mechanism. J Environ Manage 223:29–36

    Article  CAS  Google Scholar 

  • Bai Y, Dou Y et al (2016) Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45(8):2327–2367

    Article  CAS  Google Scholar 

  • Bulgariu L, Escudero LB et al (2019) The utilization of leaf-based adsorbents for dyes removal: A review. J Mol Liq 276:728–747

    Article  CAS  Google Scholar 

  • Cavka JH, Jakobsen S et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  • Chen C, Li X et al (2021) Structural modulation of UiO-66-NH2 metal-organic framework via interligands cross-linking: cooperative effects of pore diameter and amide group on selective CO2 separation. Appl Surf Sci 553:149547

    Article  CAS  Google Scholar 

  • Cioc RC, Ruijter E et al (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem Int J Green Chem Resour GC 16(6):2958–2975

    CAS  Google Scholar 

  • Dehghan, A. and A. A. Mohammadi, et al. (2019). “Enhanced kinetic removal of ciprofloxacin onto metal-organic frameworks by sonication, process optimization and metal leaching study.” NANOMATERIALS 9 (10).

  • Embaby MS, Elwany SD et al (2018) The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S. Chin J Chem Eng 26(4):731–739

    Article  CAS  Google Scholar 

  • Fan Y, Zhang S et al (2018) An enhanced adsorption of organic dyes onto NH 2 functionalization titanium-based metal-organic frameworks and the mechanism investigation. Microporous Mesoporous Mater 263:120–127

    Article  CAS  Google Scholar 

  • Fu L, Wang S et al (2019) Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water. J Hazard Mater 368:42–51

    Article  CAS  Google Scholar 

  • Ghadiri, S. K. and H. Alidadi, et al. (2020). “Valorization of biomass into amine-functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study.” PLOS ONE 15 (4).

  • Haque E, Lee JE et al (2010) Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J Hazard Mater 181(1–3):535–542

    Article  CAS  Google Scholar 

  • Holkar CR, Jadhav AJ et al (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manage 182:351–366

    Article  CAS  Google Scholar 

  • Hollanders C, Elsocht M et al (2021) 3-Substituted 2-isocyanopyridines as versatile convertible isocyanides for peptidomimetic design. Chem Commun 57(56):6863–6866

    Article  CAS  Google Scholar 

  • Huang Z, Zhao M et al (2020) Selective removal mechanism of the novel Zr-based metal organic framework adsorbents for gold ions from aqueous solutions. Chem Eng J 384:123343

    Article  CAS  Google Scholar 

  • Li J, Gong J et al (2019a) The performance of UiO-66-NH2/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes. Chemosphere 237:124517

    Article  CAS  Google Scholar 

  • Li W, Mu B et al (2019b) Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Biores Technol 277:157–170

    Article  CAS  Google Scholar 

  • Liang Z, Qu C et al (2018) Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv Mater 30(37):1702891

    Article  Google Scholar 

  • Lin J, Liu Y et al (2021) Ultra-fast adsorption of four typical pollutants using magnetically separable ethanolamine-functionalized graphene. Sep Purif Technol 271:118862

    Article  CAS  Google Scholar 

  • Liu J, Yu H et al (2020) Superior absorption capacity of tremella like ferrocene based metal-organic framework in removal of organic dye from water. J Hazard Mater 392:122274

    Article  CAS  Google Scholar 

  • Liu Q, Zang GL et al (2021) Removal of copper ions by functionalized biochar based on a multicomponent Ugi reaction. RSC Adv 11(42):25880–25891

    Article  CAS  Google Scholar 

  • Lu Y, Jiang B et al (2016) High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere 152:415–422

    Article  CAS  Google Scholar 

  • Lv S, Liu J et al (2019) Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs. Microporous Mesoporous Mater 282:179–187

    Article  CAS  Google Scholar 

  • Meng J, Liu X et al (2020) Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem Soc Rev 49(10):3142–3186

    Article  CAS  Google Scholar 

  • Min X, Wu X et al (2019) Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number. Chem Eng J 358:321–330

    Article  CAS  Google Scholar 

  • Mittal A, Malviya A et al (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater 148(1–2):229–240

    Article  CAS  Google Scholar 

  • Mittal J (2020) Permissible synthetic food dyes in India. Reson J Sci Ed 25(4):567–577

    Google Scholar 

  • Mittal, J. and A. Mariyam, et al. (2021). “Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent.” J Clean Prod 321.

  • Mohammadi AA, Dehghani MH et al (2020) Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies. Int J Biol Macromol 155:1019–1029

    Article  CAS  Google Scholar 

  • Niu C, Zhang N et al (2021) Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium(VI) and methyl orange from aqueous solution. Carbohyd Polym 258:117644

    Article  CAS  Google Scholar 

  • Niu P, Lu N et al (2019) Water-induced synthesis of hierarchical Zr-based MOFs with enhanced adsorption capacity and catalytic activity. Microporous Mesoporous Mater 281:92–100

    Article  CAS  Google Scholar 

  • Patel A, Soni S et al (2021) Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. Desalin Water Treat 220:342–352

    Article  CAS  Google Scholar 

  • Qiu J, Feng Y et al (2017) Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. J Colloid Interface Sci 499:151–158

    Article  CAS  Google Scholar 

  • Rezaei A, Akhavan O et al (2016) Toward Chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. Biomacromol 17(9):2963–2971

    Article  CAS  Google Scholar 

  • Tang J, Chen Y et al (2021) Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions. J Hazard Mater 413:125278

    Article  CAS  Google Scholar 

  • Tchalala, M. R. and P. M. Bhatt, et al. (2019). “Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air.” Nature Communications 10 (1).

  • Wang C, An B et al (2019a) Metal–organic frameworks in solid–gas phase catalysis. ACS Catal 9(1):130–146

    Article  CAS  Google Scholar 

  • Wang R, Liu L et al (2020a) Engineering pH-switchable UiO-66 via in-situ amino acid doping for highly selective adsorption of anionic dyes. Chem Eng J 395:124958

    Article  CAS  Google Scholar 

  • Wang Y, Yan J et al (2020b) Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230:119619

    Article  CAS  Google Scholar 

  • Wang Z, Song L et al (2019b) Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem Eng J 371:138–144

    Article  Google Scholar 

  • Wang Z, Jia Y et al (2021) Optimization of boron adsorption from desalinated seawater onto UiO-66-NH2/GO composite adsorbent using response surface methodology. J Clean Prod 300:126974

    Article  CAS  Google Scholar 

  • Winarta J, Shan B et al (2020) A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst Growth Des 20(2):1347–1362

    Article  CAS  Google Scholar 

  • Yao S, Liu S et al (2019) A ZnII-based metal–organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg Chem 58(6):3578–3581

    Article  CAS  Google Scholar 

  • Yousefi, M. and M. Gholami, et al. (2021). “Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques.” J Environ Chem Eng 9 (4).

  • Zeng Y, Li Y et al (2020) Antibacterial self-healing hydrogel via the Ugi reaction. ACS Appl Polym Mater 2(2):404–410

    Article  CAS  Google Scholar 

  • Zha Q, Sang X et al (2019) Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption. J Solid State Chem 275:23–29

    Article  CAS  Google Scholar 

  • Zhang M, Yang K et al (2020) 3D-agaric like core-shell architecture UiO-66-NH2@ZIF-8 with robust stability for highly efficient REEs recovery. Chem Eng J 386:124023

    Article  CAS  Google Scholar 

  • Zhang Q, Cui Y et al (2019) Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coord Chem Rev 378:310–332

    Article  CAS  Google Scholar 

  • Zhang Y, Ruan Q et al (2018) Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater. J Colloid Interface Sci 525:39–47

    Article  CAS  Google Scholar 

  • Zhao J, Wang C et al (2020) Experimental and DFT study of selective adsorption mechanisms of Pb(II) by UiO-66-NH2 modified with 1,8-dihydroxyanthraquinone. J Ind Eng Chem 83:111–122

    Article  CAS  Google Scholar 

  • Zhao MH, Huang Z et al (2019) Design of L-cysteine functionalized UiO-66 MOFs for selective adsorption of Hg(II) in aqueous medium. ACS Appl Mater Interfaces 11(50):46973–46983

    Article  CAS  Google Scholar 

  • Zhi SJ, Ma XM et al (2019) Consecutive multicomponent reactions for the synthesis of complex molecules. Org Biomol Chem 17(33):7794–7794

    Article  CAS  Google Scholar 

  • Zhou Y, Lu J et al (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365

    CAS  Google Scholar 

Download references

Funding

This study was supported by the NSFC (Grant Number 21607113), the Natural Science Foundation of Tianjin City (Grant Number 17JCQNJC07700), and the National Key Research and Development Program-China (Grant Number 2017YFE0127200).

Author information

Authors and Affiliations

Authors

Contributions

Qi Liu: conceptualization, methodology, investigation, resources, data curation, writing—review and editing, visualization. Guolong Zang: conceptualization, writing—review and editing, supervision, formal analysis, project administration, funding acquisition. Quan Zhao: conceptualization, methodology, investigation, supervision.

Corresponding author

Correspondence to Guo-Long Zang.

Ethics declarations

Ethics approval and consent to participate

This study did not involve human participants, human data, or human tissue.

Consent to publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zang, GL. & Zhao, Q. Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS. Environ Sci Pollut Res 29, 76833–76846 (2022). https://doi.org/10.1007/s11356-022-21175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21175-0

Keywords

Navigation