Skip to main content
Log in

PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is an excellent membrane-forming material with unique two-dimensional transport channels and excellent adsorption properties for heavy metal contaminants. However, swelling under cross-flow conditions and long-term water immersion leads to poor separation performances. To improve the stability of GO membrane materials, we propose a PVA-integrated graphene oxide/attapulgite membrane (GOAP) with a 3D microstructural arrangement of “brick–mortar-brick.” The addition of PVA as mortar reinforces the strength of the structures via induced hydrogen bonding within the 3D water transport network. Furthermore, the Al2O3 ceramic substrate pre-treated with (3-aminopropyl) triethoxysilane (APTES) provided high mechanical stability to the composite membrane, extending the membrane’s stability beyond a month of immersion without swelling or shedding. The PVA-integrated GO/ATP composite membrane maintained a rejection rate of 99% for Cu2+ solution (100 mg/L) in a 26-h continuous with nearly 100% rejection for various metals ions such as Cu2+, Ni2+, Pb2+, and Cd2+. The membrane exhibited a water flux of 20.7 L·m−2·h−1, which was 15.9-fold high than the pure GO membrane (GOM). The high water flux and heavy metal filtration rate with superior stability proved the practical suitability of the composite film for removing heavy metal ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary data files).

References

  • An AK, Guo J, Lee E-J, Jeong S, Zhao Y, Wang Z, Leiknes T (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67

    Article  CAS  Google Scholar 

  • Bai H, Sheng K, Zhang P, Li C, Shi G (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21:18653–18658

    Article  CAS  Google Scholar 

  • Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and Characterization of Poly(vinyl alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Ind Eng Chem Res 53:16621–16632

    Article  CAS  Google Scholar 

  • Bai G, Wang J, Yang Z, Wang H, Wang Z, Yang S (2015) Self-assembly of ceria/graphene oxide composite films with ultra-long antiwear lifetime under a high applied load. Carbon 84:197–206

    Article  CAS  Google Scholar 

  • Chaudhary M, Rawat S, Jain N, Bhatnagar A, Maiti A (2019) Chitosan-Fe-Al-Mn metal oxyhydroxides composite as highly efficient fluoride scavenger for aqueous medium. Carbohydr Polym 216:140–148

    Article  CAS  Google Scholar 

  • Chaudhary, Mohit, Maiti A (2020) Fe–Al–Mn@ chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: removal mechanisms and antibacterial behavior. J Membr Sci 611:118372

    Article  CAS  Google Scholar 

  • Chaudhary M, Jain N, Maiti A (2021) A comparative adsorption kinetic modeling of fluoride adsorption by nanoparticles and its polymeric nanocomposite. J Environ Chem Eng 9(5):105595

    Article  CAS  Google Scholar 

  • Chen G, Sun M, Wei Q, Ma Z, Du B (2012) Efficient photocatalytic reduction of aqueous Cr(VI) over CaSb2O5(OH)2 nanocrystals under UV light illumination. Appl Catal B Environ 125:282–287

    Article  CAS  Google Scholar 

  • Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380–383

    Article  CAS  Google Scholar 

  • Cortez-Maghelly C, Bisch PM (1995) Effect of ionic strength and outer surface charge on the mechanical stability of the erythrocyte membrane: a linear hydrodynamic analysis. J Theor Biol 176(3):325–339

    Article  CAS  Google Scholar 

  • Dave HK, Nath K (2016) Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater. J Water Process Eng 14:124–134

    Article  Google Scholar 

  • Dechnik J, Sumby CJ, Janiak C (2017) Enhancing mixed-matrix membrane performance with metal–organic framework additives. Cryst Growth Des 17(8):4467–4488

    Article  CAS  Google Scholar 

  • Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D (2010) Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. J Am Chem Soc 132:8466–8473

    Article  CAS  Google Scholar 

  • Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535

    Article  CAS  Google Scholar 

  • Gonzalez-Ortiz D, Pochat-Bohatier C, Gassara S, Cambedouzou J, Bechelany M, Miele P (2018) Development of novel h-BNNS/PVA porous membranes via Pickering emulsion templating. Green Chem 20:4319–4329

    Article  CAS  Google Scholar 

  • Guo J, Bao H, Zhang Y, Shen X, Kim J-K, Ma J, Shao L (2021) Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 619:118791

    Article  CAS  Google Scholar 

  • Han Y, Xu Z, Gao C (2013) Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv Funct Mater 23:3693–3700

    Article  CAS  Google Scholar 

  • Han Y, Jiang Y, Gao C (2015) High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl Mater Interfaces 7:8147–8155

    Article  CAS  Google Scholar 

  • Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425

    Article  CAS  Google Scholar 

  • Huang L, Li Y, Zhou Q, Yuan W, Shi G (2015) Graphene oxide membranes with tunable semipermeability in organic solvents. Adv Mater 27:3797–3802

    Article  CAS  Google Scholar 

  • Jin S-A, Poudyal S, Marinero EE, Kuhn RJ, Stanciu LA (2016) Impedimetric Dengue Biosensor based on Functionalized Graphene Oxide Wrapped Silica Particles. Electrochim Acta 194:422–430

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908

    Article  CAS  Google Scholar 

  • Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification preparation and applications (with emphasis on aqueous media). Chem Rev 113:7728–7768

    Article  CAS  Google Scholar 

  • Le TX, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011

    Article  CAS  Google Scholar 

  • Li Y-Q, Yu T, Yang T-Y, Zheng L-X, Liao K (2012) Bio-inspired nacre-like composite films based on graphene with superior mechanical electrical and biocompatible properties. Adv Mater 24:3426–3431

    Article  CAS  Google Scholar 

  • Liu Q, Yao X, Cheng H, Frost RL (2012) An infrared spectroscopic comparison of four Chinese palygorskites. Spectrochim Acta A Mol Biomol Spectrosc 96:784–789

    Article  CAS  Google Scholar 

  • Liu W, Wang D, Soomro RA, Fu F, Qiao N, Yu Y, Wang R, Xu B (2019) Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. J Membr Sci 591:117323

    Article  CAS  Google Scholar 

  • Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    Article  CAS  Google Scholar 

  • Lu J-J, Gu Y-H, Chen Y, Yan X, Guo Y-J, Lang W-Z (2019) Ultrahigh permeability of graphene-based membranes by adjusting D-spacing with poly (ethylene imine) for the separation of dye wastewater. Sep Purif Technol 210:737–745

    Article  CAS  Google Scholar 

  • Leong ZY, Lu G, Yang H-Y (2019) Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination. Desalination 451:172–181

    Article  CAS  Google Scholar 

  • Mahmoud A, Hoadley AF (2012) An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res 46:3364–3376

    Article  CAS  Google Scholar 

  • Ou J, Wang J, Liu S, Mu B, Ren J, Wang H, Yang S (2010) Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26:15830–15836

    Article  CAS  Google Scholar 

  • Qiu Y-R, Mao L-J (2013) Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid. Desalination 329:78–85

    Article  CAS  Google Scholar 

  • Ren S, Yang S, Zhao Y (2003) Micro- and Macro-Tribological Study on a Self-Assembled Dual-Layer Film. Langmuir 19:2763–2767

    Article  CAS  Google Scholar 

  • Safarpour M, Vatanpour V, Khataee A, Esmaeili M (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep Purif Technol 154:96–107

    Article  CAS  Google Scholar 

  • Shukla AK, Alam J, Alhoshan M, Dass LA, Ali FAA, Mishra U, Ansari MA (2018) Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Environ Sci Water Res Technol 4(3):438–448

    Article  CAS  Google Scholar 

  • Shahrin S, Lau W-J, Goh P-S, Ismail AF, Jaafar J (2019) Adsorptive mixed matrix membrane incorporating graphene oxide-manganese ferrite (GMF) hybrid nanomaterial for efficient As (V) ions removal. Compos B 175:107150

    Article  CAS  Google Scholar 

  • Shukla AK, Alam J, Ansari MA, Alhoshan M, Alam M, Kaushik A (2019) Selective ion removal and antibacterial activity of silver-doped multi-walled carbon nanotube/polyphenylsulfone nanocomposite membranes. Mater Chem Phys 233:102–112

    Article  CAS  Google Scholar 

  • Scheepers D, Chatillon B, Borneman Z, Nijmeijer K (2021) Influence of charge density and ionic strength on diallyldimethylammonium chloride (DADMAC)-based polyelectrolyte multilayer membrane formation. J Membr Sci 617:118619

    Article  CAS  Google Scholar 

  • Tansel B (2012) Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius hydration free energy and viscous effects. Sep Purif Technol 86:119–126

    Article  CAS  Google Scholar 

  • Wu X, Zhu W, Zhang X, Chen T, Frost RL (2011) Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol. Appl Clay Sci 52:400–406

    Article  CAS  Google Scholar 

  • Wu X-P, Xu Y-Q, Zhang X-L, Wu Y-C, Gao P (2015) Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite. New Carbon Mater 30:71–78

    Article  CAS  Google Scholar 

  • Wei Y, Zhang Y, Gao X, Yuan Y, Su B, Gao C (2016) Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108:568–575

    Article  CAS  Google Scholar 

  • Wang Y, Feng Y, Jiang J, Yao J (2018) Designing of Recyclable Attapulgite for Wastewater Treatments: A Review. ACS Sustain Chem Eng 7:1855–1869

    Article  Google Scholar 

  • Wang C-Y, Zeng W-J, Jiang T-T, Chen X, Zhang X-L (2019) Incorporating attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment. Sep Purif Technol 214:21–30

    Article  CAS  Google Scholar 

  • Xia S, Ni M, Zhu T, Zhao Y, Li N (2015) Ultrathin graphene oxide nanosheet membranes with various d -spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371:78–87

    Article  CAS  Google Scholar 

  • Xing R, Pan F, Zhao J, Cao K, Gao C, Yang S, Liu G, Wu H, Jiang Z (2016) Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Adv 6:14381–14392

    Article  CAS  Google Scholar 

  • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao J, Chu H, Zhou X, Wei Y (2014) Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 344:71–78

    Article  CAS  Google Scholar 

  • Zhang Z, Wang W, Wang A (2015) High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue. Appl Surf Sci 329:306–314

    Article  CAS  Google Scholar 

  • Zhang M, Mao Y, Liu G, Liu G, Fan Y, Jin W (2020) Molecular Bridges Stabilize Graphene Oxide Membranes in Water. Angew Chem Int Ed 59:1689–1695

    Article  CAS  Google Scholar 

  • Zhang Y, Guo J, Han G, Bai Y, Ge Q, Ma J, Lau CH, Shao L (2021) Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv 7(13):eabe8706

    Article  CAS  Google Scholar 

  • Zeng H, He S, Hosseini SS, Bin Zhu Lu, Shao, (2022) Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv Membr 2:100015

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (buctrc201819).

Author information

Authors and Affiliations

Authors

Contributions

Anwen Chen and Wei Liu: investigation, visualization, and writing—original draft.

Razium Ali Soomro: review and editing.

YiWei: diagram drawing.

Xun Zhu and Yueqi Kang: investigation, data analysis.

Bin Xu and Ning Qiao: funding acquisition, methodology, supervision, validation.

Corresponding author

Correspondence to Bin Xu.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1105 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Liu, W., Soomro, R.A. et al. PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environ Sci Pollut Res 29, 84410–84420 (2022). https://doi.org/10.1007/s11356-022-20810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20810-0

Keywords

Navigation