Skip to main content
Log in

Harmonizing surface reflectance between Landsat-7 ETM + , Landsat-8 OLI, and Sentinel-2 MSI over China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Remote sensing dynamic monitoring methods often benefit from a dense time series of observations. To enhance these time series, it is sometimes necessary to integrate data from multiple satellite systems. In particular, the Landsat and Sentinel series provide a rich source of data for Earth observations. National Aeronautics and Space Administration (NASA) scientists proposed a method that creates global fixed per-band transformation coefficients to reduce the reflectance difference between Landsat-8 and Sentinel-2 for the harmonized Landsat and Sentinel-2 (HLS) surface reflectance product. However, the coefficient has yet to be further validated in the target study area and the coefficient can only be used for Landsat-8 and Sentinel-2, and is not useful for other sensors. The purpose of this study is to evaluate the potential of integrating surface reflectance data from Landsat-7, Landsat-8, and Sentinel-2. Some differences in the surface reflectance of the sensor pairs were identified, based upon which a cross-sensor conversion model was proposed, i.e., a suitable adjustment equation was fitted using an ordinary least squares (OLS) linear regression method to convert the Sentinel-2 reflectance values closer to the Landsat-7 or Landsat-8 values. The results show that the model adjusted the Sentinel-2 surface reflectance to match Landsat-7 or Landsat-8. The maximum MRE of the adjusted sensor for surface reflectance was reduced from 17.96 to 12.15%. Differences in reflectance produce corresponding differences in estimates of biophysical quantities, such as NDVI, with MRE as high as 18.33%. However, adjusting the Sentinel-2 sensor was able to reduce this part of the discrepancy to about 12.56%. The study believes that despite the differences in these datasets, it appears feasible to integrate these datasets by applying a linear regression correction between the bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data derived from public domain resources. The data that support the findings of this study are available were derived from the following resources available in the public domain: https://glovis.usgs.gov/ (for Landsat data), https://scihub.copernicus.eu/ (for Sentinel-2 data), https://earthengine.google.com/ (You can also access and process the research data for this study on the platform).

References

  • Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, Moghaddam SHA, Mahdavi S, Ghahremanloo M, Parsian S, Wu Q, Brisco B (2020) Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J. Sel Top Appl Earth Obs Remote Sens 13:5326–5350

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete A (1996) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Beck H, McVicar T, van Dijk A, Schellekens J, de Jeu R, Bruijnzeel LA (2011) Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115:2547–2563

    Article  Google Scholar 

  • Bégué A, Arvor D, Bellon B, Betbeder J, De Abelleyra D, Ferraz RPD, Lebourgeois V, Lelong C, Simões M, Verón SR (2018) Remote sensing and cropping practices: a review. Remote Sens 10:99

    Article  Google Scholar 

  • Cao HY, Han L, Li W, Liu ZH, Li LZ (2020) Inversion and Distribution of total suspended matter in water based on remote sensing images-a case study on Yuqiao Reservoir. China Water Environ Res 93:582–595

    Article  Google Scholar 

  • Chen J, Zhu XL, Vogelmann JE, Gao F, Jin SM (2011) A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens Environ 115:1053–1064

    Article  Google Scholar 

  • Chen J, Cao X, Peng S, Ren HR (2017) Analysis and applications of GlobeLand30: a review. ISPRS Int J Geoinf 6:230

    Article  Google Scholar 

  • Cheng T, Yang ZW, Inoue Y, Zhu Y, Cao WX (2016) Preface: recent advances in remote sensing for crop growth monitoring. Remote Sens 8:116

    Article  Google Scholar 

  • Claverie M, Demarez V, Duchemin B, Hagolle O, Ducrot D, Sicre C, Dejoux J-F, Huc M, Keravec P, Béziat P, Rémy F, Ceschia E, Dedieu G (2012) Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens Environ 124:844–857

    Article  Google Scholar 

  • Claverie M, Ju JC, Masek JG, Dungan JL, Vermote EF, Roger JC, Skakun SV, Justice C (2018) The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens Environ 219:145–161

    Article  Google Scholar 

  • Claverie M, Ju JC, Masek J (2016) Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide, NASA

  • Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571

    Article  Google Scholar 

  • Dan LP, Gonzalo MG, Luis GC (2021) Benchmarking deep learning models for cloud detection in Landsat-8 and Sentinel-2 images. Remote Sens 13:992

    Article  Google Scholar 

  • D’Odorico P, Damm A, Schaepman M (2013) Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity. IEEE Trans Geosci Remote Sens 51:1336–1348

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  Google Scholar 

  • Fensholt R, Proud S (2012) Evaluation of Earth Observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Stisen S (2006) Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Trans Geosci Remote Sens 44:1774–1786

    Article  Google Scholar 

  • Flood N (2014) Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: a study in the Australian landscape. Remote Sens 6:7952–7970

    Article  Google Scholar 

  • Foga S, Scaramuzza P, Guo S, Zhu Z, Dilley RD Jr, Beckmann T, Schmidt G, Dwyer J, Hughes M, Laue B (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390

    Article  Google Scholar 

  • Gallo K, Ji L, Reed B, Eidenshink J, Dwyer J (2005) Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens Environ 99:221–231

    Article  Google Scholar 

  • Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218

    Article  Google Scholar 

  • Gao F, Hilker T, Zhu XL, Anderson M, Masek J, Wang PJ, Yang Y (2015) Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geosci Remote Sens Mag 3:47–60

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ (1998) MODIS NDVI Optimization To Fit the AVHRR Data Series—Spectral Considerations. Remote Sens Environ 66:343–350

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74

    Article  Google Scholar 

  • Hansen M, Krylov A, Tyukavina A, Potapov P, Turubanova S, Zutta B, Suspense I, Margono B, Stolle F, Moore R (2016) Humid tropical forest disturbance alerts using Landsat data. Environ Res Lett 11:034008

    Article  Google Scholar 

  • Houborg R, McCabe MF (2017) Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances. Remote Sens Environ 194:127–145

    Article  Google Scholar 

  • Hu ZY, Dietz AJ, Kuenzer C (2019) Deriving regional snow line dynamics during the ablation seasons 1984–2018 in European Mountains. Remote Sens 11:933

    Article  Google Scholar 

  • Huang CQ, Thomas N, Goward SN, Masek JG, Zhu ZL, Townshend JRG, Vogelmann JE (2010) Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. Int J Remote Sens 31:5449–5464

    Article  Google Scholar 

  • Irons JR, Dwyer JL, Barsi JA (2012) The next Landsat satellite: The Landsat data continuity mission. Remote Sens Environ 122:11–21

    Article  Google Scholar 

  • Kaufman YJ (1987) The effect of subpixel clouds on remote sensing. Adv Space Res 7:207–210

    Article  Google Scholar 

  • Kennedy R, Cohen W, Schroeder T (2007) Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens Environ 110:370–386

    Article  Google Scholar 

  • Li J, Roy DP (2017) A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens 9:902

    Article  Google Scholar 

  • Loveland T, Dwyer J (2012) Landsat: building a strong future. Remote Sens Environ 122:22–29

    Article  Google Scholar 

  • Lyons MB, Keith DA, Phinn SR, Mason TJ, Elith J (2018) A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens Environ 208:145–153

    Article  Google Scholar 

  • Mancino G, Ferrara A, Padula A, Nolè A (2020) Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a Mediterranean environment. Remote Sens 12:291

    Article  Google Scholar 

  • Mandanici E, Bitelli G (2016) Preliminary comparison of Sentinel-2 and Landsat 8 imagery for a combined use. Remote Sens 8:1014

    Article  Google Scholar 

  • Markham B (2012) Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens Environ 122:30–40

    Article  Google Scholar 

  • Markham BL, Storey JC, Williams DL, Irons JR (2004) Landsat sensor performance: history and current status. IEEE Trans Geosci Remote Sens 42:2691–2694

    Article  Google Scholar 

  • Marshak A, Wen GY, Coakley Jr JA, Remer LA, Loeb NG, Cahalan RF (2008) A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res. Atmos. 113, D14S17

  • Martins VS, Barbosa CCF, De Carvalho LAS, Jorge DSF, Lobo FdL, Novo EMLdM (2017) Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens 9:322

    Article  Google Scholar 

  • Masek J, Vermote E, Saleous N, Wolfe R, Hall F, Huemmrich K, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance data set for North America, 1990–2000. IEEE Geosci Remote Sens Lett 3:68–72

    Article  Google Scholar 

  • Masuoka E, Roy D, Wolfe R, Morisette J, Sinno S, Teague M, Saleous N, Devadiga S, Justice CO, Nickeson J (2011) MODIS Land Data Products: Generation, Quality Assurance and Validation. In: Ramachandran B, Justice CO , Abrams MJ (Editors), Land remote sensing and global environmental change: NASA’s Earth Observing System and the Science of ASTER and MODIS. Springer New York, New York, NY, pp. 509–531

  • Melaas EK, Friedl MA, Zhu Z (2013) Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens Environ 132:176–185

    Article  Google Scholar 

  • Moran MS, Clarke TR, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49:246–263

    Article  Google Scholar 

  • Myneni R, Tucker C, Asrar G, Keeling C (1998) Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J Geophys Res Atmos 103:6145–6160

    Article  Google Scholar 

  • Ouaidrari H, Vermote EF (1999) Operational atmospheric correction of Landsat TM data. Remote Sens Environ 70:4–15

    Article  Google Scholar 

  • Pollyea RM, Fairley JP (2011) Estimating surface roughness of terrestrial laser scan data using orthogonal distance regression. Geology 39:623–626

    Article  Google Scholar 

  • Roy D, Borak J, Devadiga S, Wolfe R, Zheng M, Descloitres J (2002) The MODIS Land product quality assessment approach. Remote Sens Environ 83:62–76

    Article  Google Scholar 

  • Roy D, Ju JC, Lewis P, Schaaf C, Gao F, Hansen M, Lindquist E (2008) Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens Environ 112:3112–3130

    Article  Google Scholar 

  • Roy DP et al (2014) Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Article  Google Scholar 

  • Roy D, Kovalskyy V, Zhang H, Vermote E, Yan L, Kumar S, Egorov A (2016) Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens Environ 185:57–50

    Article  Google Scholar 

  • Sanchez AH, Picoli MCA, Camara G, Andrade PR, Chaves MED, Lechler S, Soares AR, Marujo RF, Simões REO, Ferreira KR (2020) Comparison of Cloud cover detection algorithms on sentinel–2 images of the amazon tropical forest. Remote Sens 12:1284

    Article  Google Scholar 

  • Skakun S, Kussul N, Shelestov A, Kussul O (2014) Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia. Risk Anal Off Publ Soc Risk Anal 34:1521–1537

    Google Scholar 

  • Song KS, Li L, Wang ZM, Liu DW, Zhang B, Xu JP, Du J, Li LH, Li S, Wang YD (2012) Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environ Monit Assess 184:1449–1470

    Article  CAS  Google Scholar 

  • Steven M, Malthus T, Frederic B, Xu H, Chopping M (2003) Intercalibration of vegetation indices from different sensors. Remote Sens Environ 88:412–422

    Article  Google Scholar 

  • Storey J, Choate M, Lee K (2014) Landsat 8 operational land imager on-orbit geometric calibration and performance. Remote Sens 6:11127–11152

    Article  Google Scholar 

  • Storey J, Roy DP, Masek J, Gascon F, Dwyer J, Choate M (2016) A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens Environ 186:121–122

    Article  Google Scholar 

  • Trinh RC, Fichot CG, Gierach MM, Holt B, Malakar NK, Hulley G, Smith J (2017) Application of Landsat 8 for monitoring impacts of wastewater discharge on coastal water quality. Front in Mar Sci 4:329

  • Trishchenko AP, Cihlar J, Li ZQ (2002) Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens Environ 81:1–18

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Wang L, Diao CY, Xian G, Yin DM, Lu Y, Zou SY, Erickson TA (2020) A summary of the special issue on remote sensing of land change science with Google Earth Engine. Remote Sens Environ 248:112002

    Article  Google Scholar 

  • Xu DD, Guo XL (2014) Compare NDVI Extracted from Landsat 8 Imagery with that from Landsat 7 Imagery. Am J Remote Sens 2:10–14

    Article  Google Scholar 

  • Zhang HK, Roy D, Yan L, Li ZB, Huang HY, Vermote E, Skakun S, Roger JC (2018) Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens Environ 215:482–494

    Article  Google Scholar 

  • Zhu Z, Wang SX, Woodcock C (2015) Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens Environ 159:269–277

    Article  Google Scholar 

Download references

Acknowledgements

The European Space Agency and Copernicus program and the USGS Landsat program are thanked for the free provision of the Sentinel-2A, Landsat-7, and Landsat-8 data respectively. The National Geomatics Center of China is thanked for providing the GlobalLand30 global surface coverage dataset. We would like to thank the Google Earth Engine cloud platform for support in developing the Earth Engine scripts. A team of data scientists from Ljubljana, Slovenia, are thanked for sharing the s2cloudless Python package. The anonymous reviewers are thanked for their comments which helped to improve this paper.

Funding

The authors would like to thank the financial support provided by the Fundamental Research Funds for the Central Universities, CHD (300102352901) and Key Research and Development Program in Shaanxi Province (2022ZDLSF07-05).

Author information

Authors and Affiliations

Authors

Contributions

Hongye Cao: conceptualization, methodology, software, validation and visualization; Ling Han: supervision; Langzhi Li: software and formal analysis.

Corresponding author

Correspondence to Ling Han.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors are informed and agree to the study.

Consent for publication

All authors agree to have this manuscript published in this journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Han, L. & Li, L. Harmonizing surface reflectance between Landsat-7 ETM + , Landsat-8 OLI, and Sentinel-2 MSI over China. Environ Sci Pollut Res 29, 70882–70898 (2022). https://doi.org/10.1007/s11356-022-20771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20771-4

Keywords

Navigation