Abstract
Low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP), and expanded polystyrene (EXPS) are the most common plastics found in every home of the world, but only ~ 10% enter the recycling chains. Consequently, the study of plastic biodegradation by microorganisms and insects, such as the wax moths, has gained special interest. Galleria mellonella (L.) has been shown to consume single-layered polyethylene and polystyrene, though biological impacts of this consumption have been rarely reported. We evaluated the consumption of different plastics by G. mellonella larvae (L7, mean size: 25–30 mm) and its effect on larval duration, survival, and development. For this, we offered the larvae five diets: single-layered LDPE, EXPS, BOPP, triple-layered polyethylene (SB, for silo-bags), and a control with beeswax. We recorded the state and weight of the materials and the state of larvae until they reached the adult stage. Larvae consumed more PE (both LDPE and SB) and EXPS than BOPP; still, they were able to emerge as adults in all treatments. Larvae that consumed plastics turned into pupal stage faster than those that consumed beeswax, regardless of the type and amount of plastic consumed. This is the first report of wild G. mellonella larvae in Argentina consuming biaxially polypropylene and silo-bags.






References
Abdulhay HS (2020) Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian J Agric Biol 8:201–206. https://doi.org/10.35495/ajab.2019.11.515
Anwar Mohamed A, Ansari MJ, Al-Ghamdi A et al (2014) Effect of larval nutrition on the development and mortality of Galleria mellonella (Lepidoptera: Pyralidae). Rev Colomb Entomol 40:49–54
Billen P, Khalifa L, Van Gerven F et al (2020) Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Sci Total Environ 735:139521. https://doi.org/10.1016/j.scitotenv.2020.139521
Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293
Brandon AM, Gao SH, Tian R et al (2018) Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52:6526–6533. https://doi.org/10.1021/acs.est.8b02301
Brenner DJ, McWhorter AC, Kai A et al (1986) Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23:1114–1120. https://doi.org/10.1128/JCM.23.6.1114-1120.1986
Carvalho CL, Rosa DS (2016) Polypropylene biodegradation. In: Polypropylene properties, uses and benefits. Nova Science Publishers, Inc, New York, pp 141–173
Cassone BJ, Grove HC, Elebute O et al (2020) Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth. Galleria mellonella. Proc R Soc B 287:20200112. https://doi.org/10.1098/rspb.2020.0112
Castro AV, Medici SK, Sarlo EG, Eguaras MJ (2010) Agregado de parafina en ceras estampadas y su efecto sobre el labrado de panales y viabilidad de las crías de Apis Mellifera. Zootec Trop 28:353–361
Chalup A, Ayup MM, Monmany Garzia AC et al (2018) First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. J Apic Res 57:569–571. https://doi.org/10.1080/00218839.2018.1484614
da Silva Medeiros A, da Silva Tomato AL, de Araújo JHB et al (2018) Biodegradação de poliestireno expandido utilizando Tenebrio molitor Linnaeus, 1758 (Coleoptera: Tenebrionidae) e Zophobas morio Fabricius, 1776 (Coleoptera: Tenebrionidae). Rev Bras Gestão Ambient e Sustentabilidade. https://doi.org/10.21438/rbgas.050918
Diss AL, Kunkel JG, Montgomery ME (1996) Leonard DE (1996) Effects of maternal nutrition and egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy moth. Lymantria dispar L. Oecologia 1064(106):470–477. https://doi.org/10.1007/BF00329704
Fackelmann G, Sommer S (2019) Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull 143:193–203
Gallo Mendoza G (2006) Agroquimicos Prohibidos O Restringidos. http://www.alimentosargentinos.gob.ar/bpa/bibliografia/Minagro_Agroquimicos_prohibidos.pdf. Accessed 3 Jan 2022
Geria Reines M, Chacoff N, Sosa A, Galindo-Cardona A (2021) Uso de una colmena centinela de Apis mellifera (Hymenoptera: Apidae) para evaluar presencia de plaguicidas y sus fuentes de alimentación. Acta Zoológica Lilloana 65:182–188. https://doi.org/10.30550/J.AZL/2021.65.2/2021-06-23
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782
Hu D, Shen M, Zhang Y et al (2019) Microplastics and nanoplastics: would they affect global biodiversity change? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05414-5
Jiang B, Kauffman AE, Li L et al (2020) Health impacts of environmental contamination of micro- and nanoplastics: a review. Environ Health Prev Med 25:29. https://doi.org/10.1186/s12199-020-00870-9
Kim IH, Song AY, Han J et al (2014) Indian meal moth (Plodia Interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil. J Food Sci 79:E2023–E2030. https://doi.org/10.1111/1750-3841.12642
Kong HG, Kim HH, Hui CJ et al (2019) The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Rep 26:2451–2464.e5. https://doi.org/10.1016/j.celrep.2019.02.018
Kundungal H, Gangarapu M, Sarangapani S et al (2019) Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ Sci Pollut Res 26:18509–18519. https://doi.org/10.1007/s11356-019-05038-9
Kundungal H, Synshiang K, Devipriya SP (2021) Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: an insight to the ability of polystyrene-fed larvae to complete its life cycle. Environ. Challenges 4:100083. https://doi.org/10.1016/j.envc.2021.100083
Lebreton L, Slat B, Ferrari F et al (2018) Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-22939-w
Lou Y, Ekaterina P, Yang S, et al (2020) Bio-degradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ Sci Technol acs.est.9b07044. doi: https://doi.org/10.1021/acs.est.9b07044
Malizia A, Monmany-Garzia AC (2019) Terrestrial ecologists should stop ignoring plastic pollution in the Anthropocene time. Sci Total Environ 668:1025–1029. https://doi.org/10.1016/J.SCITOTENV.2019.03.044
Matyja K, Rybak J, Hanus-Lorenz B et al (2020) Effects of polystyrene diet on Tenebrio molitor larval growth, development and survival: dynamic energy budget (DEB) model analysis. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.114740
Moreau J, Benrey B, Thiéry D (2006) Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 96:205–212. https://doi.org/10.1079/BER2005417
Peng BY, Su Y, Chen Z et al (2019) Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environ Sci Technol 53:5256–5265. https://doi.org/10.1021/acs.est.8b06963
Peng BY, Chen Z, Chen J et al (2020a) Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ Int 145:106106. https://doi.org/10.1016/j.envint.2020.106106
Peng BY, Li Y, Fan R et al (2020b) Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): broad and limited extent depolymerization. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.115206
Peng BY, Chen Z, Chen J et al (2021) Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. J Hazard Mater 416:125803. https://doi.org/10.1016/J.JHAZMAT.2021.125803
Plastics Europe (2021) Plásticos – Situación en 2020. Un análisis de los datos sobre producción, demanda y residuos en Europa. In: PlasticsEurope. https://plasticseurope.org/es/wp-content/uploads/sites/4/2021/11/ES_Plastics_the_facts-WEB-2020_May21_final_updatedJuly2021.pdf.
Quezada García R, Seehausen ML, Bauce E (2015) Adaptation of an outbreaking insect defoliator to chronic nutritional stress. J Evol Biol 28:347–355. https://doi.org/10.1111/JEB.12571
Quezada-García R, Pureswaran D, Bauce É (2014) Nutritional stress causes male-biased sex ratios in eastern spruce budworm (Lepidoptera: Tortricidae). Can Entomol 146:219–223. https://doi.org/10.4039/TCE.2013.72
R Core Team (2019) R: a language and environment for statistical computing. https://www.r-project.org/.
Réjasse A, Waeytens J, Deniset-Besseau A et al (2022) Plastic biodegradation: do Galleria mellonella larvae bioassimilate polyethylene? A spectral histology approach using isotopic labeling and infrared microspectroscopy. Environ Sci Technol 56:525–534. https://doi.org/10.1021/acs.est.1c03417
Rochman CM, Hoellein T (2020) The global odyssey of plastic pollution. Science 368(80):1184–1185. https://doi.org/10.1126/science.abc4428
Russell JR, Huang J, Anand P et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084. https://doi.org/10.1128/AEM.00521-11
Saastamoinen M, Van Der Sterren D, Vastenhout N et al (2010) Predictive adaptive responses: condition-dependent impact of adult nutrition and flight in the tropical butterfly Bicyclus anynana. Am Nat 176:686–698. https://doi.org/10.1086/657038
Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426. https://doi.org/10.1016/j.copbio.2011.01.013
Svečnjak L, Jović O, Prđun S et al (2019) Influence of beeswax adulteration with paraffin on the composition and quality of honey determined by physico-chemical analyses, 1 H NMR, FTIR-ATR and HS-SPME/GC-MS. Food Chem 291:187–198. https://doi.org/10.1016/J.FOODCHEM.2019.03.151
Woo S, Song I, Cha HJ (2020) Fast and facile biodegradation of polystyrene by the gut microbial flora of Plesiophthalmus davidis larvae. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01361-20
Wood CT, Zimmer M (2014) Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics? Appl Soil Ecol 77:72–79. https://doi.org/10.1016/j.apsoil.2014.01.009
Wu WM, Criddle CS (2021) Characterization of biodegradation of plastics in insect larvae. In: Methods in Enzymology, 1st edn. Elsevier Inc., pp 95–120
Yang J, Yang Y, Wu W et al (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. https://doi.org/10.1021/es504038a
Yang Y, Yang J, Wu WM et al (2015a) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086. https://doi.org/10.1021/acs.est.5b02661
Yang Y, Yang J, Wu WM et al (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093. https://doi.org/10.1021/acs.est.5b02663
Yang SS, Brandon AM, Andrew Flanagan JC et al (2018a) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979–989. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.117
Yang SS, Wu WM, Brandon AM et al (2018b) Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere 212:262–271. https://doi.org/10.1016/j.chemosphere.2018.08.078
Yang SS, Ding MQ, He L et al (2020) Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Sci Total Environ 756:144087. https://doi.org/10.1016/j.scitotenv.2020.144087
Yang L, Gao J, Liu Y et al (2021a) Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere 262:127818. https://doi.org/10.1016/j.chemosphere.2020.127818
Yang SS, Ding MQ, Zhang ZR et al (2021b) Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Sci Total Environ 789:147915. https://doi.org/10.1016/J.SCITOTENV.2021.147915
Yoshida S, Hiraga K, Takehana T, et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). 351:1–5.
Acknowledgements
We are grateful to María Angélica Occhionero, who helped with the lab work, and to the beekeepers Nelson Lizarraga and Mario Gallo, who donated larvae for our work. The Escuela de Agricultura y Sacarotecnia from the Universidad Nacional de Tucumán, Argentina, contributed to the maintenance of moth colonies in the experimental apiary at Horco Molle. Thanks to students and colleagues that collaborated with data gathering and manuscript edition.
Funding
This work was supported by Secretaría de Estado de Innovación y Desarrollo Tecnológico from the government of Tucumán (Grant number SIDETEC 18) and Agencia Nacional de Promoción Científica y Tecnológica, government of Argentina (Grant number PICT 2017-0833).
Availability of data and materials
Not applicable.
Author information
Authors and Affiliations
Contributions
JMRB, EM, AGC, AM, RdC, AC, and ACMG contributed to the study conception and design. Material preparation was performed by JMRB, EM, AGC, RdC, AC, and ACMG. Data collection was performed by JMRB, and data analysis was performed by JMRB, EM, and ACMG. The first draft of the manuscript was written by JMRB, EM, and ACMG, and all the authors commented on previous versions of the manuscript. Financial resources were searched by AM, EM, AGC, RdC, AC, and ACMG and administered by AM. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
All the authors agreed with the content and gave explicit consent to submit.
Competing interests
The authors declare no competing interests.
Additional information
Responsible Editor: Giovanni Benelli
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ruiz Barrionuevo, J.M., Martín, E., Galindo Cardona, A. et al. Consumption of low-density polyethylene, polypropylene, and polystyrene materials by larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera, Pyralidae), impacts on their ontogeny. Environ Sci Pollut Res 29, 68132–68142 (2022). https://doi.org/10.1007/s11356-022-20534-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-022-20534-1