Borode AO, Ahmed NA, Olubambi PA et al (2021) Effect of various surfactants on the viscosity, thermal and electrical conductivity of graphene nanoplatelets Nanofluid. Int J Thermophys 42:1–15. https://doi.org/10.1007/s10765-021-02914-w
CAS
Article
Google Scholar
Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R (2014) Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy 72:636–642. https://doi.org/10.1016/j.energy.2014.05.089
CAS
Article
Google Scholar
Demirkır C, Erturk H (2020) Rheological and thermal characterization of graphene-water nanofluids: hysteresis phenomenon. Int J Heat Mass Transf 149:3–11. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119113
CAS
Article
Google Scholar
Dhivagar R, Kannan KG (2022) Thermodynamic and economic analysis of heat pump-assisted solar still using paraffin wax as phase change material. Environ Sci Pollut Res 29:3131–3140. https://doi.org/10.1007/s11356-021-17183-1
Article
Google Scholar
Dhivagar R, Mohanraj M, Belyayev Y (2021a) Performance analysis of crushed gravel sand heat storage and biomass evaporator-assisted single slope solar still. Environ Sci Pollut Res 28:65610–65620. https://doi.org/10.1007/s11356-021-15487-w
CAS
Article
Google Scholar
Dhivagar R, Mohanraj M, Deepanraj B, Murugan VS (2021b) Assessment of single slope solar still using block and disc magnets via productivity, economic, and enviro-economic perspectives: a comparative study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15565-z
Article
Google Scholar
Dhivagar R, Mohanraj M, Raj P, Gopidesi RK (2021c) Thermodynamic analysis of single slope solar still using graphite plates and block magnets at seasonal climatic conditions. Water Sci Technol 84:2635–2651. https://doi.org/10.2166/wst.2021.156
CAS
Article
Google Scholar
Fernandez-Merino MJ, Paredes JI, Villar-Rodil S et al (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon N Y 50:3184–3194. https://doi.org/10.1016/j.carbon.2011.10.039
CAS
Article
Google Scholar
Ganesh Kumar P, Sakthivadivel D, Thangapandian N et al (2021) Effects of ultasonication and surfactant on the thermal and electrical conductivity of water – solar glycol mixture based Al2O3 nanofluids for solar-thermal applications. Sustainable Energy Technol Assess 47:101371. https://doi.org/10.1016/j.seta.2021.101371
Article
Google Scholar
Ganeshkumar P, Kumaresan V, Velraj R (2017) Stability, viscosity, thermal conductivity, and electrical conductivity enhancement of multi-walled carbon nanotube nanofluid using gum arabic. Fullerenes, Nanotubes, Carbon Nanostruct 25(4):230–240. https://doi.org/10.1080/1536383X.2017.1283615
Article
Google Scholar
Harish S, Orejon D, Takata Y, Kohno M (2017) Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions. Appl Therm Eng 114:1240–1246. https://doi.org/10.1016/j.applthermaleng.2016.10.109
CAS
Article
Google Scholar
Ilyas SU, Ridha S, Abdul Kareem FA (2020) Dispersion stability and surface tension of SDS-Stabilized saline nanofluids with graphene nanoplatelets. Colloids Surf A Physicochem Eng Asp 592:124584. https://doi.org/10.1016/j.colsurfa.2020.124584
CAS
Article
Google Scholar
Jia L, Peng L, Chen Y et al (2014) Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate. Appl Energy 124:248–255. https://doi.org/10.1016/j.apenergy.2014.03.019
CAS
Article
Google Scholar
Karimi MA, Mozaheb MA, Hatefi-Mehrjardi A et al (2015) A new simple method for determining the critical micelle concentration of surfactants using surface plasmon resonance of silver nanoparticles. J Anal Sci Technol 6:4–11. https://doi.org/10.1186/s40543-015-0077-y
CAS
Article
Google Scholar
Kazemi I, Sefid M, Afrand M (2020) A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements. Powder Technol 366:216–229. https://doi.org/10.1016/j.powtec.2020.02.010
CAS
Article
Google Scholar
Kim S, Tserengombo B, Choi SH et al (2018) Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. Int Commun Heat Mass Transf 91:95–102. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011
CAS
Article
Google Scholar
Kim SC, Prabakaran R, Sakthivadivel D et al (2020) Thermal transport properties of carbon-assisted phase change nanocomposite. Fullerenes, Nanotubes, Carbon Nanostruct 28:925–933. https://doi.org/10.1080/1536383X.2020.1786814
CAS
Article
Google Scholar
Kumar PG, Kumaresan V, Velraj R (2016) Experimental investigation on thermophysical properties of solar glycol dispersed with multi-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 24:641–652. https://doi.org/10.1080/1536383X.2016.1219852
CAS
Article
Google Scholar
Kumaresan V, Raghavan KS, Ponrajan Vikram M, Iyyappan J (2021) Role of graphitized mesoporous carbon on solidification and melting characteristics of water for cool thermal storage. Fullerenes, Nanotubes, Carbon Nanostruct 29:890–898. https://doi.org/10.1080/1536383X.2021.1910811
CAS
Article
Google Scholar
Mingzheng Z, Guodong X, Jian L et al (2012) Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci 36:22–29. https://doi.org/10.1016/j.expthermflusci.2011.07.014
CAS
Article
Google Scholar
Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X
Article
Google Scholar
Morimoto T, Kawana Y, Saegusa K, Kumano H (2019) Supercooling characteristics of phase change material particles within phase change emulsions. Int J Refrig 99:1–7. https://doi.org/10.1016/j.ijrefrig.2018.11.039
CAS
Article
Google Scholar
Murugan P, Ganesh Kumar P, Kumaresan V et al (2018) Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and melting. Phase Transitions 91:254–270. https://doi.org/10.1080/01411594.2017.1372760
CAS
Article
Google Scholar
Nazari B, Ranjbar Z, Hashjin RR, et al (2019) Dispersing graphene in aqueous media: investigating the effect of different surfactants. Colloids Surfaces A Physicochem Eng Asp 582. https://doi.org/10.1016/j.colsurfa.2019.123870
Prabakaran R, Sidney S, Lal DM, et al (2019) Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies 12(18):3473. https://doi.org/10.3390/en12183473
Prabakaran R, Prasanna Naveen Kumar J, Mohan Lal D et al (2020) Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim 139:941–952. https://doi.org/10.1007/s10973-019-08458-4
CAS
Article
Google Scholar
Sarsam WS, Amiri A, Kazi SN, Badarudin A (2016) Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manag 116:101–111. https://doi.org/10.1016/j.enconman.2016.02.082
CAS
Article
Google Scholar
Sathishkumar A, Cheralathan M (2022a) Influence of thermal transport properties of NEPCM for cool thermal energy storage system. J Therm Anal Calorim 147:367–378. https://doi.org/10.1007/s10973-020-10339-0
CAS
Article
Google Scholar
Sathishkumar A, Cheralathan M (2022b) Effect of active multi-walled carbon nanotubes (MWCNT) on the energy storage density of DI water for cool thermal storage system. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18779-x
Article
Google Scholar
Sathishkumar A, Kumaresan V, Velraj R (2016) Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications. Int J Refrig 66:73–83. https://doi.org/10.1016/j.ijrefrig.2016.01.014
CAS
Article
Google Scholar
Sidney S, Prabakaran R, Kim SC, Dhasan ML (2021) A novel solar-powered milk cooling refrigeration unit with cold thermal energy storage for rural application. Environ Sci Pollut Res 29(11):16346–16370. https://doi.org/10.1007/s11356-021-16852-5
Sundaram P, Kalaisselvane A (2021) Effect of different additives on freezing characteristics and stability of GnP-aqueous-based PCM for cold thermal storage. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-11056-y
Vikram MP, Kumaresan V, Christopher S, Velraj R (2019) Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications. Int J Refrig 100:454–462. https://doi.org/10.1016/j.ijrefrig.2018.11.025
CAS
Article
Google Scholar
Wu W, Wang X, Xia M et al (2020) A novel composite PCM for seasonal thermal energy storage of solar water heating system. Renew Energy 161:457–469. https://doi.org/10.1016/j.renene.2020.06.147
Article
Google Scholar
Xian HW, Sidik NAC, Saidur R (2020) Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf 110:104389. https://doi.org/10.1016/j.icheatmasstransfer.2019.104389
Xuan Y, Li Q, Tie P (2013) The effect of surfactants on heat transfer feature of nanofluids. Exp Therm Fluid Sci 46:259–262. https://doi.org/10.1016/j.expthermflusci.2012.12.004
CAS
Article
Google Scholar
Yang L, Villalobos U, Akhmetov B, et al (2021) A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: state of the art and recent developments. Appl. Energy 288:116555. https://doi.org/10.1016/j.apenergy.2021.116555
Zahir MH, Mohamed SA, Saidur R, Al-Sulaiman FA (2019) Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy 240:793–817. https://doi.org/10.1016/j.apenergy.2019.02.045
CAS
Article
Google Scholar