Skip to main content

Advertisement

Log in

Experimental investigations and the modeling approach for CO2 solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, new CO2 solubility data on three types of aqueous amine blends were reported to complement existing databases. The experiments were conducted at temperatures of 313 K (absorption condition) and 363 K (desorption condition). The effect of the MEA concentration on the CO2 solubility in several amine blends at low CO2 partial pressure (8 to 50.65 kPa) were studied in this work, including 0.1, 0.3, 0.5 mol/L MEA + 2 mol/L AMP; 0.1, 0.3, 0.5 mol/L MEA + 2 mol/L BEA; and 0.1, 0.3, 0.5 mol/L MEA + 1, 2 mol/L AMP + 1, 2 mol/L BEA. Besides, an additional group of equilibrium CO2 solubility data were conducted at 298 K in order to estimate the heat of CO2 absorption of the blended solvents at a temperature range from 298 to 313 K. A new simplified Kent-Eisenberg model was developed for the predictions of blended solvents, and a multilayer neural network model with Levenberg–Marquardt backpropagation algorithm was developed upon five hundred reliable published experimental data. The predictions from two methods are both in good agreement with the experimental CO2 solubility data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

Abbreviations

\({P}_{{\mathrm{CO}}_{2}}\) :

CO2 partial pressure, kPa

T :

Operating temperature, K or °C

X :

The overall concentration of the amine in the solvent, wt.%

X MEA :

Weight fraction of MEA, wt.%

X AMP :

Weight fraction of AMP, wt.%

X BEA :

Weight fraction of BEA, wt.%

MW a :

Apparent molecular weight, g/mol

MEA:

Monoethanolamine

AMP:

2-Amino-2-methyl-1-propanol

BEA:

2-(Butylamino)ethanol

CO2 :

Carbon dioxide

Y i :

The normalized training and testing data sets

x i :

The training and testing data sets

x min :

The minimum values of variable

x max :

The maximum values of variable

%AAD:

The absolute average deviation, %

R 2 :

The correlation coefficient

MSE:

The mean square errors

EXP:

Exponential function

Α :

CO2 loading, molCO2/molamine

References

  • Aronu UE, Gondal S, Hessen ET, Warberg TH, Hartono A, Hoff KA, Svendsen HF (2017) Solubility of CO2 in 15,30,45 and 60 mas% MEA from 40 to 120°C and model representation using the extended UNIQUAC framework. Chem Eng Sci 66:6393–6406

    Article  Google Scholar 

  • Austgen DM, Rochelle GT, Chen CC (1991) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of hydrogen sulfide and carbon dioxide solubility in aqueous MDEA and carbon dioxide solubility in aqueous mixtures of MDEA with MEA or DEA. Ind Eng Chem Res 30(3):543–555

    Article  CAS  Google Scholar 

  • Baygi SF, Pahlavanzadeh H (2015) Application of the perturbed chain-SAFT equation of state for modeling CO2 solubility in aqueous monoethanolamine solutions. Chem Eng Res Des 93:789–799

    Article  Google Scholar 

  • Chen G, Luo X, Zhang H, Fu K, Liang Z, Rongwong W (2015) Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions. Int J Greenh Gas Control 39:174–184

    Article  CAS  Google Scholar 

  • Choi BK, Kim SM, Lee JS, Park YC, Chun DH, Shin HY, Sung HJ, Min BM, Moon JH (2020) Effect of blending ratio and temperature on CO2 solubility in blended aqueous solution of monoethanolamine and 2-amino-2-methyl-propanol: experimental and modeling study using the electrolyte nonrandom two-liquid model. ACS Omega 5(44):28738–28748

    Article  CAS  Google Scholar 

  • Coker J, Afari DB, Tetteh J, Idem R (2017) Mass-transfer studies of solid-base catalyst-aided CO2 absorption and solid-acid catalyst-aided CO2 desorption for CO2 capture in a pilot plant using aqueous solutions of MEA and blends of MEA-MDEA and BEA-AMP. Clean Energy 3:263–277

    Article  Google Scholar 

  • Dawodu OF, Meisen A (1994) Solubility of carbon dioxide in aqueous mixtures of alkanolamines. J Chem Eng Data 39(3):548–552

    Article  CAS  Google Scholar 

  • Edwards TJ, Maurer G, Newman J (1978) Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. ALChE J 24(6):966–976

    Article  CAS  Google Scholar 

  • Fu K, Chen G, Sema T, Zhang X, Liang Z, Idem R, Tontiwachwuthikul P (2013) Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA. Chem. Eng. Sci 100:195–202

    Article  CAS  Google Scholar 

  • Golzar K, Modarress H, Amjad-Iranagh S (2016) Evaluation of density, viscosity, surface tension and CO2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. Int J Greenh Gas Control 53:187–197

    Article  CAS  Google Scholar 

  • Gross J, Sadowski G (2001) Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40(4):1244–1260

    Article  CAS  Google Scholar 

  • Haji-Sulaiman MZ, Aroua MK, Benamor A (1998) Analysis of equilibrium data of CO2 in aqueous solutions of diethanolamine (DEA), methyldiethanolamine (MDEA) and their mixtures using the modified Kent Eisenberg model. Trans IchemE 76:961–868

    Article  CAS  Google Scholar 

  • Hamborg ES, Versteeg GF (2009) Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K.J. Chem Eng Data 54(4):1318–1328

    Article  CAS  Google Scholar 

  • Hamzehie ME, Mazinani S, Davardoost F, Mokhtare A, Najibi H, Van der Bruggen B, Darvishmanesh S (2014) Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions. J Nat Gas Sci Eng 21:19–25

    Article  CAS  Google Scholar 

  • He J, Xu X, Gui X (2021) New vapor-liquid phase equilibrium data of CO2 in several heavy n-alanes at high pressures. J Chem Eng Data 66(4):1600–1610

    Article  CAS  Google Scholar 

  • Hu W, Chakma AA (1990) modeling of equilibrium solubility of CO2 and H2S in aqueous amino methyl propanol (AMP) solutions. Chem Eng Commun 94(1):53–61

    Article  CAS  Google Scholar 

  • Huang SH, Radosz M (1990) Equation of state for small, large, polydisperse, and associating molecules. Ind Eng Chem Res 29(11):2284–2294

    Article  CAS  Google Scholar 

  • Hwang SJ, Kim H, Lee KS (2016) Prediction of VLE for aqueous blended amines using VLE models of single amines. Int J Greenh Gas Control 49:250–258

    Article  CAS  Google Scholar 

  • Hwang SJ, Kim J, Kim H, Lee KS (2017) Solubility of carbon dioxide in aqueous solutions of three secondary amines: 2-(butylamino)ethanol, 2-(isopropylamino)ethanol, and 2-(ethylamino)ethanol secondary alkanolamine solutions. J Chem Eng Data 62(8):2428–2435

    Article  CAS  Google Scholar 

  • International Energy Agency (2020) World Energy Outlook 2020 Part of World Energy Outlook., IEA, Paris

  • Isaacs EE, Otto FD, Mather AE (1980) Solubility of mixtures of hydrogen sulfide and carbon dioxide in a monoethanolamine solution at low partial pressures. J Chem Eng Data 25(2):118–120

    Article  CAS  Google Scholar 

  • Jane IS, Li M (1997) Solubilities of mixtures of carbon dioxide and hydrogen sulfide in water + diethanolamine +2-amino-2-methyl-1-propanol. J Chem Eng Data 42:98–105

    Article  CAS  Google Scholar 

  • Jones JH, Froning HR, Claytor EE (1951) Solubility of acidic gases in aqueous monoethanolamine. J Chem Eng Data 4:85–92

    Article  Google Scholar 

  • Kent RL, Eisenberg B (1976) Better data for amine treating. Hydrocarb Process 1:60–165

    Google Scholar 

  • Kundu M, Mandal B, Bandyopadhyay S (2003) Vapour -liquid equilibria of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol. J Chem Eng Data 48(4):789–796

    Article  CAS  Google Scholar 

  • Li M, Chang BC (1995) Solubility of mixtures of carbon dioxide and hydrogen sulfide in water + monoethanolamine + 2-amino-2-mehtyl-1-propanol. J Chem Eng Data 40:328–331

    Article  CAS  Google Scholar 

  • Li M, Shen K (1993) Calculation of equilibrium solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Fluid Phase Equilib 85:129–140

    Article  CAS  Google Scholar 

  • Li C, Liu H, Xiao M, Luo X, Gao H, Liang Z (2017) Thermodynamics and ANN models for predication of the equilibrium CO2 solubility in aqueous 3-dimethylamino-1-propanol solution. Int J Greenh Gas Control 63:77–85

    Article  CAS  Google Scholar 

  • Li T, Tantikhajorngosol P, Yang C, Tontiwachwuthikul P (2021) Experimental investigations and developing multilayer neural network models for prediction of CO2 solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends. Greenh Gases: Sci Technol 11(4):712–733

    Article  CAS  Google Scholar 

  • Liu H, Li M, Idem R, Tontiwachwuthikul P, Liang Z (2017) Analysis of solubility, absorption heat and kinetics of CO2 absorption into 1-(2-hydroxyethyl)pyrrolidine solvent. Chem Eng Sci 162:120–130

    Article  CAS  Google Scholar 

  • Liu H, Xiao M, Tontiwachwuthikul P, Liang Z (2017) A novel model for correlation and prediction of the equilibrium CO2 solubility in seven tertiary solvents. Energy Procedia 105:4476–4481

    Article  CAS  Google Scholar 

  • Liu H, Chan C, Tontiwachwuthikul P, Idem R (2019) Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. Fuel 249:61–72

    Article  CAS  Google Scholar 

  • Mazinani S, Samsami A, Jahanmiri A, Sardarian A (2011) Solubility (at low partial pressures), density, viscosity and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG). J Chem Eng Data 56(7):3163–3168

    Article  CAS  Google Scholar 

  • Mondal BK, Bandyopadhyay S, Samanta AN (2017) Experimental measurement and Kent-Eisenberg modelling of CO2 solubility in aqueous mixture of 2-amino-2-methyl-1-propanol and hexamethylenediamine. Fluid Phase Equilib 437:118–126

    Article  CAS  Google Scholar 

  • Muchan P, Saiwan C, Narku-Tetteh J, Idem R, Supap T, Tontiwachwuthikul P (2017) Screening tests of aqueous alkanolamine solutions based on primary secondary and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chem Eng Sci 170:574–582

    Article  CAS  Google Scholar 

  • Murshid G, Garg S, Ali A, Maqsood K, See T (2020) An experimental and modeling to investigate CO2 solubility in blended aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol (AHPD) and piperazine (PZ). Cleaner Eng Technol 1:100004

    Article  Google Scholar 

  • Najafloo A, Zarei S (2018) Modeling solubility of CO2 in aqueous monoethanolamine (MEA) solution using SAFT-HR equation of state. Fluid Phase Equilib 456:25–32

    Article  CAS  Google Scholar 

  • Narku-Tetteh J, Muchan P, Idem R (2017) Effect of alkanol chain length of primary alkanolamines and alkyl chain length of secondary and tertiary alkanolamines on their CO2 capture activities. Sep Purif Technol 187:453–467

    Article  CAS  Google Scholar 

  • Narku-Tetteh J, Muchan P, Saiwan C, Supap T, Idem R (2017) Selection of components for formation of amine blends for post combustion CO2 capture based on the side chain structure of primary, secondary, and tertiary amines. Chem Eng Sci 170:542–560

    Article  CAS  Google Scholar 

  • Pahlavanzadeh H, Nourani S, Seber M (2011) Experimental analysis and modeling of CO2 solubility in AMP (2-amino-2-methyl-1-propanol) at low CO2 partial pressure using the models of Deshmukh-Mather and the artificial neural network. J Chem Thermodyn 43(26):1775–1783

    Article  CAS  Google Scholar 

  • Park JY, Yoon SJ, Lee H, Yoon JH, Shim JG, Lee JK, Min BY, Eum HM, Kang MC (2002) Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol. Fluid Phase Equilib 202(2):359–366

    Article  CAS  Google Scholar 

  • Ping T, Dong Y, Shen S (2020) Energy-efficient CO2 capture using nonaqueous absorbents of secondary alkanolamines with a 2-butoxyethanol cosolvent. ACS Sustainable Chem Eng 8(49):18071–18082

    Article  CAS  Google Scholar 

  • Portugal AF, Sousa JM, Magalhaes FD, Mendes A (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem. Eng. Sci 64:1993–2002

    Article  CAS  Google Scholar 

  • Rumpf B, Maurer G (1993) An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes. Ber Bunsen-Ges Phys Chem 97:85–97

    Article  CAS  Google Scholar 

  • Shen KP, Li MH (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data 37(1):96–100

    Article  CAS  Google Scholar 

  • Shi H, Cui M, Fu J, Dai W, Huang M, Han J, Quan L, Tontiwachwuthikul P, Liang Z (2021) Application of “coordinative effect” into tri-solvent MEA+BEA+AMP blends of concentrations of 0.1+2+2~0.5+2+2mol/L with absorption desorption and mass transfer analyses. Int J Greenh Gas Control 107:103267

    Article  CAS  Google Scholar 

  • Shi H, Feng H, Yang X, Zou T, Tontiwachwuthikul P, Jiang L (2021b) Study of “coordinative effect” within bi-blended amine MEA+AMP and MEA+BEA at 0.1+2–0.5+2 mol/L with absorption-desorption parameter analyses. Asia-Pac J Chem Eng 16(4)

  • Silkenbaumer D, Rumpt B, Lichtenthaler RN (1998) Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and n-methyldiethanolamine and their mixtures in the temperature range from 313 to 353K and pressure up to 2.7 Mpa. Ind Eng Chem Res 37(8):3133–3141

    Article  Google Scholar 

  • Singh P, Brilman DWF, Groeneveld MJ (2011) Evaluation of CO2 solubility in potential aqueous amine-based solvents at low CO2 partial pressure. Int J Greenh Gas Control 5(1):61–68

    Article  CAS  Google Scholar 

  • Sipocz N, Tobiesen FA, Assadi M (2016) The use of artificial neural network models for CO2 capture plants. Appl Energy 88(7):2368–2376

    Article  Google Scholar 

  • Teng TT, Mather AE (1990) Solubility of CO2 in an AMP solution. J Chem Eng Data 35:410–411

    Article  CAS  Google Scholar 

  • Tong D, Maitland C, Trusler M (2013) Fennell, P.S. Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and piperazine. Chem Eng Sci 101:851–864

    Article  CAS  Google Scholar 

  • Tontiwachwuthikul P, Melsen A, Lim CL (1991) Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions. J Chem Eng Data 36(1):130–133

    Article  CAS  Google Scholar 

  • Xu S, Wang YW, Otto FD, Mather AE (1992) Representation of the equilibrium solubility properties of CO2 with aqueous solutions of 2-amino-2-methyl-1-propanol. Chem Eng Process 31(1):7–12

    Article  CAS  Google Scholar 

  • Yazdi A, Najafloo A, Sakhaeinia H (2020) A method for thermodynamic modeling of H2S solubility using PC-SAFT equation of state based on a ternary solution of water, methyldiethanolamine and hydrogen sulfide. J Molecular Liq 299:112113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The generous support of the Natural Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. The editorial help of Angel Charles is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Li T. and Yang C. conducted the research; Li T. wrote the paper; Li T. conducted the literature study; Sema T., Tantikhajorngosol P., Shi H., and Tontiwachwuthikul P. revised the paper.

Corresponding authors

Correspondence to Huancong Shi or Paitoon Tontiwachwuthikul.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Santiago V. Luis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yang, C., Tantikhajorngosol, P. et al. Experimental investigations and the modeling approach for CO2 solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol. Environ Sci Pollut Res 29, 69402–69423 (2022). https://doi.org/10.1007/s11356-022-20411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20411-x

Keywords