Ali E, Islam MS, Hossen MI, Khatun MM, Islam MA (2021) Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Vet Med Sci. 7(5):1921–1927. https://doi.org/10.1002/vms3.511
Alzohairy M A (2016) “Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment.” Evidence-based complementaryand alternative medicine : eCAM vol 2016, 7382506. https://doi.org/10.1155/2016/7382506
Arantes V, Dias IKR, Berto GL, Pereira B, Marotti BS, Nogueira CFO (2020) The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities. Cellulose 27:10571–10630
CAS
Article
Google Scholar
Bilo F, Pandini S, Sartore L, Depero LE, Gargiulo G, Bonassi A, Federici S, Bontempi E (2018) A sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368. https://doi.org/10.1016/J.JCLEPRO.2018.07.252
CAS
Article
Google Scholar
Dai J, Yaylayan VA, Vijaya Raghavan GS, Parè JR, Liu Z (2001) Multivariate Calibration for the Determination of Total Azadirachtin-Related Limonoids and Simple Terpenoids in Neem Extracts Using Vanillin Assay. J Agric Food Chem 49 (3):1169–1174. https://doi.org/10.1021/jf001141n
Dilamian M, Noroozi B (2019) A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26:5831–5849. https://doi.org/10.1007/s10570-019-02469-y
CAS
Article
Google Scholar
Dutta H, Kumar S, Kalita D, Lata C (2011) Effect of acid concentration and treatment time on acid – alcohol modified jackfruit seed starch properties. Food Chem 128:284–291. https://doi.org/10.1016/j.foodchem.2011.03.016
CAS
Article
Google Scholar
El-Bakry M, Abraham J, Cerda A, Barrena R, Ponsá S, Gea T, Sánchez A (2015) From wastes to high value added products : novel aspects of ssf in the production of enzymes. Crit Rev Environ Sci Technol 45:1999–2042. https://doi.org/10.1080/10643389.2015.1010423
CAS
Article
Google Scholar
Fittipaldi N, Pessoa J, Feitosa A, Miguel F, Paulo J, Morais S, Karine F, De SM, De SM, De FM (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions : properties and morphological features. Carbohyd Polym 155:425–431. https://doi.org/10.1016/j.carbpol.2016.08.090
CAS
Article
Google Scholar
Harjaj K, Bala A, Gupta RK, Sharma R (2013) Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathog Dis 69(1):62–65. https://doi.org/10.1111/2049-632X.12050
Hassan G, Forsman N, Wan X, Keurulainen L, Bimbo LM, Stehl S, Chrubasik FVCM, Prakash AS, Johansson LS, Mullen DC, Johnston BF, Zimmermann R, Werner C, Yli-Kauhaluoma J, Coenye T, Saris PEJ, Österberg M, Moreira VM (2020) "Nonleaching,highly biocompatible nanocellulose surfaces that efficiently resist fouling by bacteria in an artificial dermis model." ACS Applied Bio Materials 3,(7): 4095–4108
Jack AA, Nordli HR, Powell LC, Powell KA, Kishnani H, Johnsen PO, Pukstad B, Thomas DW, Chinga-Carrasco G, Hill KE (2017) The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr Polym 157:1955–1962. https://doi.org/10.1016/j.carbpol.2016.11.080
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740−755
Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310. https://doi.org/10.1038/nature02122
CAS
Article
Google Scholar
Maraveas C (2020) Production of sustainable construction materials using agro-wastes. Materials 13:262–291
CAS
Article
Google Scholar
Mathew S, Snigdha S, Mathew J, Radhakrishnan EK (2019) Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag Shelf Life 19:155–166. https://doi.org/10.1016/j.fpsl.2018.12.009
Article
Google Scholar
Oyekanmi AA, Kumar USU, Abdul Khalil HPS, Olaiya NG, Amirul AA, Rahman AA, Nuryawan A, Abdullah CK, Rizal S (2021) Functional properties of antimicrobial neem leaves extract based macroalgae biofilms for potential use as active dry packaging applications. Polymers 13:1–22. https://doi.org/10.3390/polym13101664
CAS
Article
Google Scholar
Panaitescu DM, Ionita ER, Nicolae CA, Gabor AR, Ionita MD, Trusca R, Lixandru BE, Codita I, Dinescu G (2018) Poly(3-hydroxybutyrate) modified by nanocellulose and plasma treatment for packaging applications. Polymers 10:1–24. https://doi.org/10.3390/polym10111249
CAS
Article
Google Scholar
Raj AAS (2018) Thottiam Vasudevan Ranganathan (2018) Characterization of cellulose from jackfruit ( Artocarpus integer ) peel. J Pharm Res 6:1–6. https://doi.org/10.18006/2018.6(2).414.424
CAS
Article
Google Scholar
Reshmy R, Madhavan A, Philip E, Paul SA (2021a) Sugarcane bagasse derived nanocellulose reinforced with frankincense ( Boswellia serrata ): physicochemical properties, biodegradability and antimicrobial effect for controlling microbial growth for food packaging ap. Environ Technol Innov 21:101335. https://doi.org/10.1016/j.eti.2020.101335
CAS
Article
Google Scholar
Reshmy R, Philip E, Paul S, Madhavan A, Raveendran S, Binod P, Pandey A, Sirohi R (2020a) Nanocellulose-based products for sustainable applications-recent trends and possibilities. Rev Environ Sci Biotechnol 19:779–806. https://doi.org/10.1007/s11157-020-09551-z
CAS
Article
Google Scholar
Reshmy R, Philip E, Paul S, Madhavan A, Raveendran S, Parameswaran B, Pandey A (2020b) A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. Biomass Convers Biorefin 9:1–10. https://doi.org/10.1007/s13399-020-00961-1
CAS
Article
Google Scholar
Reshmy R, Aravind Madhavan, Arun K B, Philip E, Sindhu R, Binod P, Anoop Puthiyamadam, Mukesh Kumar Awasthi, Ashok Pandey. (2022). Chili post-harvest residue-derived nanocellulose composite as a matrix for in vitro cell culture and Hemigraphis colorata blended nanocellulose extends antimicrobial potential. Sustain Chem Pharm 25, 100584. https://doi.org/10.1016/j.scp.2021.100584
Reshmy R, Philip E, Vaisakh PH, Raj S, Annie S, Madhavan A, Sindhu R, Binod P, Sirohi R, Pugazhendhi A, Pandey A (2021b) Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler. Sci Total Environ 767:144285. https://doi.org/10.1016/j.scitotenv.2020.144285
CAS
Article
Google Scholar
Retnowati DS, Ratnawati R, Purbasari A (2015) A biodegradable film from jackfruit (Artocarpus Heterophyllus) AND Durian( Durio Zibethinus) seed flours. Sci Study Res Chemistry Chem Eng Biotechnol Food Ind 16:395–404
CAS
Google Scholar
Sharma C, Bhardwaj NK (2020) Fabrication of natural-origin antibacterial nanocellulose films using bio-extracts for potential use in biomedical industry. Int J Biol Macromol 145:914–925. https://doi.org/10.1016/j.ijbiomac.2019.09.182
CAS
Article
Google Scholar
Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464. https://doi.org/10.1016/j.carbpol.2017.12.068
Tavakolian M, Okshevsky M, Ven TGM, Van De, Tufenkji N (2018) Developing antibacterial nanocrystalline cellulose using natural antibacterial agents. ACS Appl. Mater. Interfaces 10, 33827–33838
Thibeaux R, Kainiu M, Goarant C (2020) Biofilm formation and quantification using the 96-microtiter plate. Methods in Molecular Biology. Humana, New York, pp 207–214
Google Scholar
Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-53412-x
CAS
Article
Google Scholar
Tyagi P, Mathew R, Opperman C, Jameel H, Gonzalez R, Lucia L, Hubbe M, Pal L (2019) High-strength antibacterial chitosan-cellulose nanocrystal composite tissue paper. Langmuir 35:104–112. https://doi.org/10.1021/acs.langmuir.8b02655
CAS
Article
Google Scholar