Skip to main content

Advertisement

Log in

Long-term climatology and spatial trends of absorption, scattering, and total aerosol optical depths over East Africa during 2001–2019

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The unprecedented increase in anthropogenic activities, coupled with the prevailing climatic conditions, has increased the aerosol load over East Africa (EA). Given this, the present study examined the trends in total, absorption, scattering, and total aerosol extinction optical depth (TAOD, AAOD, SAOD, and TAEOD) over EA, alongside trends in single scattering albedo (SSA). For this purpose, the AOD of different optical properties retrieved from multiple sensors and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) model between January 2001 to December 2019 were utilized to estimate trends and assess their statistical significance. The spatial patterns of seasonal mean AOD from the Moderate-resolution Imaging Spectroradiometer (MODIS) sensor and MERRA-2 model were generally characterized with high (>0.35) and low (<0.2) AOD centers over EA observed during the local dry and wet seasons, respectively. Also, the spatial trend analysis revealed a general increase in TAOD, being positive and significant over the arid and semi-arid zones of the northeastern part of EA, which is majorly dominated by locally derived dust. The local dry (wet) months generally experienced positive (negative) trends in TAOD, associated with seasonal cycles of rainfall. High and significant positive trends in AAOD were dominated over the study domain, attributed to an increased amount of biomass burning, variations in soil moisture, and changes in the rainfall pattern. The trends in TAEOD showed a distinct pattern, except over some months that depicted significant increasing trends attributed to changes in climatic conditions and anthropogenic activities. At last, the study domain exhibited decreasing trends in SSA, signifying strong absorption of direct solar radiation resulting in a warming effect. The study revealed patterns of trends in aerosol optical properties and forms the basis for further research in aerosols over EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Datasets utilized in the present study can be accessed at the following links: all the optical properties of AOD can be downloaded at http://giovanni.gsfc.nasa.gov/giovanni/ .

References

  • Adesina AJ, Kumar KR, Sivakumar V, Piketh SJ (2016) Inter-comparison and assessment of long-term (2004–2013) multiple satellite aerosol products over two contrasting sites in South Africa. J Atmos Sol Terr Phys 148:82–95. https://doi.org/10.1016/j.jastp.2016.09.001

    Article  CAS  Google Scholar 

  • Akkermans T, Clerbaux N (2020) Narrowband-to-broadband conversions for top-of-atmosphere reflectance from the advanced very high-resolution radiometer (AVHRR). Remote Sens 12:305. https://doi.org/10.3390/rs12020305

    Article  Google Scholar 

  • Aklesso M, Kumar RK, Bua L, Boiyo R (2018) Analysis of spatial-temporal heterogeneity in remotely sensed aerosol properties observed during 2005–2015 over three countries along the Gulf of Guinea Coast in Southern West Africa. Atmos Environ 182:313–324. https://doi.org/10.1016/j.atmosenv.2018.03.062

    Article  CAS  Google Scholar 

  • Aldabash M, Balcik FB, Glantz P (2020) Validation of MODIS C6.1 and MERRA-2 AOD using AERONET observations: a comparative study over Turkey. Atmosphere 11, 905. https://doi.org/10.3390/atmos11090905

  • Alpert P, Kaufman YJ, Shayel Y, Tanre D, Da Silva A, Joseph YH (1998) Dust forcing of climate inferred from correlation between dust data and model errors. Nature. 395:367–370

    Article  CAS  Google Scholar 

  • Amiridis V, Balis DS, Kazadzis S, Bais A, Giannakaki E, Papayannis A, Zerefos C (2005) Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European aerosol Research lidar network (EARLINET). J Geophys Res 110:D21203. https://doi.org/10.1029/2005JD006190

    Article  Google Scholar 

  • Athar H, Nabeel A, Nadeem, I. And Saeed, F. (2021) Projected changes in the climate of Pakistan using IPCC AR5-based climate models. Theor Appl Climatol 145:567–584. https://doi.org/10.1007/s00704-021-03651-8

    Article  Google Scholar 

  • Ayugi BO, Wen W, Chepkemoi D (2016) Analysis of spatial and temporal patterns of rainfall variations over Kenya. Journal of Environment and Earth Science ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 6(11)

  • Ayugi B, Tan G, Gnitou GT, Ojara M, Ongoma V (2020) Historical evaluations and simulations of precipitation over East Africa from Rossby Centre regional climate model. Atmos Res 232:104705. https://doi.org/10.1016/j.atmosres.2019.104705

    Article  Google Scholar 

  • Bennouna YS, Cachorro VE, Toledano C, Berjón A, Prats ND, Fuertes R, Gonzalez Rodrigo R, Torres B, De Frutos AM (2011) Comparison of atmospheric aerosol climatologies over southwestern Spain derived from AERONET and MODIS. Remote Sens Environ 115:1272–1284. https://doi.org/10.1016/j.rse.2011.01.011

    Article  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T, Bao Y (2017) Climatological analysis of aerosol optical properties over east Africa observed from space-borne sensors during 2001–2015. Atmos Environ 152:298–313. https://doi.org/10.1016/j.atmosenv.2016.12.050

    Article  CAS  Google Scholar 

  • Boiyo RK, Kumar R, Zhao T (2018) Spatial variations and trends in AOD climatology over East Africa during 2002–2016: a comparative study using three satellite data sets. Int J Climatol. https://doi.org/10.1002/joc.5446

  • Boiyo KR, Kumar KR, Zhao T, Guo J (2019) 10-year record of aerosol optical properties and radiative forcing over three environmentally distinct AERONET sites in Kenya, East Africa. J Geophys Res Atmos. https://doi.org/10.1029/2018JD029

  • Caroline M, Wainwright AB, John H, Marsham C, David P, Rowell D, Declan L, Finney C, Black E (2021) Future changes in seasonality in East Africa from regional simulations with explicit and parameterized convection. Am Meteorol Soc. https://doi.org/10.1175/JCLI-D-20-0450.1

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430. https://doi.org/10.1126/science.255.5043.423

    Article  CAS  Google Scholar 

  • Che H, Zhang XY, Chen HB, Damiri B, Goloub P, Li ZQ et al (2009) Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network. J Geophys Res 114:D03206. https://doi.org/10.1029/2008JD011030

    Article  CAS  Google Scholar 

  • Dahutia P, Pathak B, Bhuyan PK (2017) Aerosol’s characteristics, trends and their climatic implications over Northeast India and adjoining South Asia. Int J Climatol. https://doi.org/10.1002/joc.5240

  • De Graaf M, Tilstra LG, Aben I, Stammes P (2010) Satellite observations of the seasonal cycles of absorbing aerosols in Africa related to the monsoon rainfall, 1995-2008. Atmos Environ 44:1274–1283. https://doi.org/10.1016/j.atmosenv.2009.12.038

    Article  CAS  Google Scholar 

  • Deng X, Cao W, Huo Y, Yang G, Yu C, He D, Deng W, Fu W, Ding H, Zhai J, Cheng L, Zhao X (2019) Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017. Theor Appl Climatol 135:1105–1122. https://doi.org/10.1007/s00704-018-2426-4

    Article  Google Scholar 

  • Floutsi AA, Korras-carraca MB, Matsoukas C, Hatzianastassiou N, Biskos G (2016) Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002 – 2014) based on collection 006 MODIS-Aqua data. Sci Total Environ 551–552:292–303. https://doi.org/10.1016/j.scitotenv.2016.01.192

    Article  CAS  Google Scholar 

  • Gatebe CK, Tyson PD, Annegarn HJ, Helas G, Kinyua AM, Piketh SJ (2001) Characterization and transport of aerosols over equatorial eastern Africa. Glob Biogeochem Cycles 15:663e672. https://doi.org/10.1029/2000GB001340

    Article  Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci Rep 9:11376. https://doi.org/10.1038/s41598-019-47933-8

    Article  CAS  Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R (2017) The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J Clim 30(14). https://doi.org/10.1175/JCLI-D-16-0758.1

  • Guillén-Lambea S, Carvalho M, Delgado M, Lazaro A (2021) Sustainable enhancement of district heating and cooling configurations by combining thermal energy storage and life cycle assessment. Clean Techn Environ Policy 23:857–867. https://doi.org/10.1007/s10098-020-01941-9

    Article  CAS  Google Scholar 

  • Hammer S, Martin R, Chi L, Torres O, Manning M, Boys B (2018) Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI ultraviolet aerosol index. Atmos Chem Phys 18:8097–8112

    Article  CAS  Google Scholar 

  • Hansen JE, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  CAS  Google Scholar 

  • He Q, Li C, Geng F, Lei Y, Li Y (2012) Study on long-term aerosol distribution over the land of East China using MODIS data. Aerosol Air Qual Res 12:304–319

    Article  Google Scholar 

  • He Q, Zhang M, Huang B (2016) Spatio-temporal variation and impact factors analysis of satellites-based aerosol optical depth over China from 2002 to 2015. Atmos Environ 129:79–90

    Article  CAS  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ et al (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dac X et al (2013) Intergovernmental panel on climate change (IPCC). Climate change the specific basis. Contribution of working group 1 for the fifth assessment report. Remote Sens Environ 66:1–16

    Google Scholar 

  • Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569

    Article  Google Scholar 

  • Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC (2013) Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118(16):9296–9315. https://doi.org/10.1002/jgrd.50712

    Article  Google Scholar 

  • Hu K, Kumar KR, Kang N, Boiyo R, Jinwen Wu (2018) Spatiotemporal characteristics of aerosols and their trends over mainland China with the recent Collection 6 MODIS and OMI satellite datasets. Environ Sci Pollut Res 25:6909–6927. https://doi.org/10.1007/s11356-017-0715-6

    Article  Google Scholar 

  • Ignatov A, Sapper J, Cox S, Laszlo I, Nalli NR, Kidwell KB (2004) Operational aerosol observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J Atmos Ocean Technol 21(1):3–26. https://doi.org/10.1175/1520-0426

    Article  Google Scholar 

  • Jethva H, Satheesh SK, Srinivasan J, Levy RC (2010) Improved retrieval of aerosol size-resolved properties from moderate resolution imaging spectroradiometer over India: role of aerosol model and surface reflectance. 115(18). https://doi.org/10.1029/2009JD013218

  • Kang Z, Li Q, Gao XJ, Zhang L, Jia ZX, Feng Y, Qin GS, Qin WP (2014) Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength. Astro Ltd Laser Physics Letters 11(3):035102

    Article  CAS  Google Scholar 

  • Kang N, Kumar KR, Hu K, Yu X, Yin Y (2016) Long-term (2002–2014) evolution and trend in collection 5.1 level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmos Res 181:29–43. https://doi.org/10.1016/j.atmosres.2016.06.008

    Article  CAS  Google Scholar 

  • Khan R, Kumar RK, Zhao T, Ali G (2020) The contribution of different aerosol types to direct radiative forcing over distinct environments of Pakistan inferred from the AERONET data. Environ Res Lett 15:114062

  • Khan R, Kumar KR, Zhao T, Ullah W, de Leeuw G (2021) Interdecadal changes in aerosol optical depth over Pakistan based on the MERRA-2 reanalysis data during 1980–2018. Remote Sens 13:822. https://doi.org/10.3390/rs13040822

    Article  Google Scholar 

  • Kinney PL, Gatari GM, Volavka-close N, Ngo N, Ndiba PK, Law A, Gachanja A, Gaita MS, Chillrud NS, Sclar E (2011) Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environ Sci Policy 14:369–378. https://doi.org/10.1016/j.envsci.2011.02.005

    Article  CAS  Google Scholar 

  • Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016) Aerosol optical depth trend over the Middle East. Atmos Chem Phys 16:5063–5073

    Article  Google Scholar 

  • Kumar KR, Sivakumar V, Yin Y, Reddy RR, Kang N, Diao Y, Adesina AJ, Yu X (2014) Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos Environ 95:400–408. https://doi.org/10.1016/j.atmosenv.2014.07.001

    Article  CAS  Google Scholar 

  • Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Adesina AJ, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88∘S, 31.02∘E), South Africa. Atmos Environ 117:9–18. https://doi.org/10.1016/j.atmosenv.2015.06.058

    Article  CAS  Google Scholar 

  • Kumar KR, Kang N, Sivakumar V, Griffith D (2017) Temporal characteristics of columnar aerosol optical properties and radiative forcing (2011-2015) measured at AERONET’s Pretoria_CSIR_DPSS site in South Africa. Atmos Environ 165:274–289

    Article  CAS  Google Scholar 

  • Lee KH, Li Z, Wong MS, Xin J, Wang Y, Hao W, Zhao F (2007) Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. J Geophys Res 112:D22S15. https://doi.org/10.1029/2007JD009077

    Article  CAS  Google Scholar 

  • Levelt P, Hilsenrath E, Leppelmeier G, van den Oord G, Bhartia P, Tamminen J et al (2006) Science objectives of the ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1199–1208

    Article  Google Scholar 

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5MODIS dark-target aerosol products over land. Atmos Chem Phys 10(21):10399–10420. https://doi.org/10.5194/acp-10-10399-2010

    Article  CAS  Google Scholar 

  • Li J, Carlson B, Dubovik O, Lacis AA (2014) Recent trends in aerosol optical properties derived from AERONET measurements. Atmos Chem Phys 14:12271–12289

    Article  CAS  Google Scholar 

  • Liu Z, Liu Q, Lin HC, Schwartz CS, Lee YH, Wang T (2011) Three-dimensional variational assimilation of MODIS aerosol optical depth: implementation and application to a dust storm over East Asia. J Geophys Res Atmos 116:1–19. https://doi.org/10.1029/2011jd016159

    Article  Google Scholar 

  • Livingston JM, Redemann J, Russell PB, Torres O, Veihelmann B, Veefkind P, Braak R, Smirnov A, Remer L, Bergstrom RW, Coddington O, Schmidt KS, Pilewskie P, Johnson R, Zhang Q (2009) Comparison of aerosol optical depths from the ozone monitoring instrument (OMI) on aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B. Atmos Chem Phys Discuss 9:9961–10013

    Google Scholar 

  • Luo Y, Zheng X, Zhao T, Chen J (2014) A climatology of aerosol optical depth over China from recent 10 years ofMODIS remote sensing data. Int J Climatol 34:863–870. https://doi.org/10.1002/joc.3728

    Article  Google Scholar 

  • Makokha JW, Angeyo HK (2013) Investigation of radiative characteristics of the Kenyan atmosphere due to aerosols using sun spectrophotometry measurements and the COART Model. Aerosol Air Qual Res 13:201–208

    Article  Google Scholar 

  • Makokha J, Odhiambo J, Godfrey J (2017) Trend analysis of aerosol optical depth and Angstrom exponent anomaly over East Africa. Atmos Clim Sci 7:588–603. https://doi.org/10.4236/acs.2017.74043

    Article  Google Scholar 

  • Makokha JW, Odhiambo JO, Shem JG (2018) Long term assessment of aerosol radiative forcing over selected sites of East Africa. J Geosci Environ Prot\ 6:22–34. https://doi.org/10.4236/gep.2018.64002

    Article  Google Scholar 

  • Mehta M, Singh R, Singh A, Singh N (2016) Recent global aerosol optical depth variations and trends- a comparative study using MODIS and MISR level 3 datasets. Remote Sens Environ 181:137–150

    Article  Google Scholar 

  • Ngaina J, Muthama J (2014) Monitoring spatial-temporal variability of aerosol over Kenya. Ethiop J Environ Stud Manage 7:244–252. https://doi.org/10.4314/ejesm.v7i3.2

    Article  Google Scholar 

  • Ngo NS, Gatari M, Yan B, Chillrud SN, Bouhamam K, Kinney PL (2015) Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: a pilot study in Nairobi, Kenya. Atmos Environ 111:179–184. https://doi.org/10.1016/j.atmosenv.2015.04.008

    Article  CAS  Google Scholar 

  • Nicholson ES (2017) Climate and climatic variability of rainfall over eastern Africa. J Geophys Res - Atmos. https://doi.org/10.1002/2016RG000544

  • Ongoma V, Chen H (2017) Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-016-0462-0

  • Pathak B, Bhuyan P (2013) Absorbing and scattering properties of boundary layer aerosols over Dibrugarh, North East India. Int J Remote Sens 35(14). https://doi.org/10.1080/01431161.2014.926424

  • Prasad AK, Singh RP, Kafatos M, Singh A (2005) Effect of the growing population on the air pollution, climatic variability and hydrological regime of the Ganga Basin, India. In Proceedings of the Symposium S6 Held during the Seventh IAHS Scientific Assembly, Foz do Iguaçu, Brazil, 3–9 April 2005; IAHS Publication: Foz do Iguaçu, Brazil pp 295

  • Prijith SS, Rao P, Mohan M, Sai M, Ramana M (2017) Trends of absorption, scattering and total aerosol optical depths over India and surrounding oceanic regions from satellite observations: role of local production, transport and atmospheric dnamics. Environ Sci Pollut Res Int

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  • Ramachandran S, Rupakheti M, Lawrence MG (2020) Aerosol-induced atmospheric Heating rate decreases over South and East Asia as a result of changing content and composition. Nat Res. https://doi.org/10.1038/s41598-020-76936-z

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. https://doi.org/10.1126/science.1064034

    Article  CAS  Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Matto S, Chu DA, Martins JV et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  • Rienecker MM, Suarez JM, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich GM, Schubert DS, Takacs L, Kim G, Bloom S, Chen J, Collins D, Conaty A, Dasilva A, Gu W, Joiner J, Koster RD, Lucchesi R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24. https://doi.org/10.1175/JCLI-D-11-00015.1

  • Satheesh SK, Ramanathan V, Holben BN, Moorthy KK, Loeb NG, Maring H, Prospero JM, Savoie D (2002) Chemical, microphysical, and radiative effects of Indian Ocean aerosols. J Geophys Res 107(D23):4725. https://doi.org/10.1029/2002jd002463

    Article  Google Scholar 

  • Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ (2013) Validation and uncertainty estimates for MODIS collection 6B Deep Blue aerosol data. J Geophys Res Atmos 118(14):7864–7872. https://doi.org/10.1002/jgrd.50600

    Article  Google Scholar 

  • Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong MJ (2014) MODIS Collection 6 aerosol products: comparison between aqua’s Deep Blue, dark target, and B merged data sets, and usage recommendations. J Geophys Res Atmos 119(24):13965–13989. https://doi.org/10.1002/2014JD022453

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics from air pollution to climate change. John Wiley and Sons, New York

    Book  Google Scholar 

  • Stenge M, Stapelberg S, Sus O, Finkensieper S, Würzler B, Philipp D, Hollmann R, Poulsen C, Christensen M, McGarragh G (2020) Cloud reflectance from advanced very high-resolution radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties. Earth Syst Sci Data 12:41–60. https://doi.org/10.5194/essd-12-41-2020

    Article  Google Scholar 

  • Tang R, Lu Q, Guo S, Wang H, Song K, Yu Y, Tan R, Liu K, Shen R, Chen S, Zeng L, Jorga SD, Zhang Z, Zhang W, Shuai S, Robinson AL (2021) Measurement report: distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: implication of high secondary organic aerosol formation potential. Atmos Chem Phys 21:2569–2583. https://doi.org/10.5194/acp-21-2569-2021

    Article  CAS  Google Scholar 

  • Tanre D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102(D14):16971–16986. https://doi.org/10.1029/96JD03437

    Article  Google Scholar 

  • Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Joyce PJ (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res 102:23,895–23,915

    Article  CAS  Google Scholar 

  • Torres O, Bhartia P, Herman J, Ahmad Z, Gleson J (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103(D14):17099e17110

    Article  Google Scholar 

  • Torres O, Bhartia PK, Sinyuk A, Welton EJ, Holben B (2005) Total ozone mapping spectrometer measurements of aerosol absorption from space: comparison to SAFARI 2000 ground-based observations. J Geophys Res 110:D10S18. https://doi.org/10.1029/2004JD004611

    Article  CAS  Google Scholar 

  • Torres O, Tanskanen A, Veihelmann B, Ahn C, Braak R, Bhartia PK et al (2007) Aerosols and surface UV products from ozone monitoring instrument observations: an overview. J Geophys Res 112:D24S47. https://doi.org/10.1029/2007JD008809

    Article  CAS  Google Scholar 

  • Wang Y, Gu X, Li J, Mi XA (2021) Dual-channel aerosol optical depth retrieval algorithm incorporating the BRDF effect from AVHRR over Eastern Asia. Remote Sens 13:365. https://doi.org/10.3390/rs13030365

    Article  Google Scholar 

  • Weatherhead EC, Reinsel GC, Tiao GC, Meng XL, Choi D, Cheang WK, Keller T, DeLuisi J, Wuebbles DJ, Kerr JB, Miller AJ, Oltmans SJ, Frederick JE (1998) Factors affecting the detection of trends: statistical considerations and applications to environmental data. J Geophys Res 103(D14):17149–17161. https://doi.org/10.1029/98JD00995

    Article  Google Scholar 

  • Weber M, Coldewey-Egbers M, Fioletov VE, Frith SM, Wild JD, Burrows JP, Long CS, Loyola D (2018) Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery. Atmos Chem Phys 18:2097–2117. https://doi.org/10.5194/acp-18-2097-2018

    Article  CAS  Google Scholar 

  • Welton EJ, Campbell JR (2002) Micropulse lidar signals: uncertainty analysis. J Atmos Ocean Technol 19:2089–2094. https://doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0

  • Wu WS, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev 130:2905–2916

    Article  Google Scholar 

  • Yusuf N, Said RS, Tilmes S, Gbobaniyi E (2021) Multi-year analysis of aerosol optical properties at various timescales using AERONET data in tropical West Africa. J Aerosol Sci 151(2021):105625

    Article  CAS  Google Scholar 

  • Zhang J, Reid JS (2010) A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmos Chem Phys 10:10949–10963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the NASA LAADS and Giovanni online analysis and visualization system for providing and processing MODIS, MERRA-2, and OMI satellite data used in this study. The lead author (Mr. Geoffrey W. Khamala) extends sincere gratitude to the Ministry of Higher Education, Science and Technology of Kenya and Kibabii University, Kenya, for providing an opportunity to undertake Ph.D. studies.

Funding

The author KRK thank the Science and Engineering Research Board (a statutory body of the Department of Science and Technology (DST)), New Delhi, for granting sponsored research project under the Start-up Research Grant (SRG) Scheme of SERB (File No: SRG/2020/001445). One of the authors, KRK, is grateful to the DST, Govt. of India, for the award of the DST-FIST Level-1 (File No. SR/FST/PS-1/2018/35) scheme to the Department of Physics, KLEF, India.

Author information

Authors and Affiliations

Authors

Contributions

Geoffrey W. Khamala: formal analysis, methodology, visualization, investigation, and writing—original draft. John W. Makokha: conceptualization, resources, supervision, and writing—review and editing. Richard Boiyo: supervision and writing—review and editing. Kanike Raghavendra Kumar: Funding acquisition and writing—review and editing.

Corresponding author

Correspondence to Geoffrey W. Khamala.

Ethics declarations

Ethics approval and consent to participate

All authors actively participated in processing, writing, editing, and reviewing the manuscript.

Consent for publication

All the authors agree to the publication of the present manuscript.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kanike Raghavendra Kumar handled the entire review process of the manuscript from submission until its acceptance for publication in the ESPR journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamala, G.W., Makokha, J.W., Boiyo, R. et al. Long-term climatology and spatial trends of absorption, scattering, and total aerosol optical depths over East Africa during 2001–2019. Environ Sci Pollut Res 29, 61283–61297 (2022). https://doi.org/10.1007/s11356-022-20022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20022-6

Keywords

Navigation