Abstract
The major reason behind the spread of antibiotic resistance genes (ARGs) is persistent selective pressure in the environment encountered by bacteria. Genome plasticity plays a crucial role in dissemination of antibiotic resistance among bacterial pathogens. Mobile genetic elements harboring ARGs are reported to dodge bacterial immune system and mediate horizontal gene transfer (HGT) under selective pressure. Residual antibiotic pollutants develop selective pressures that force the bacteria to lose their defense mechanisms (CRISPR-cas) and acquire resistance. The present study targets the ESKAPE organisms (namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) causing various nosocomial infections and emerging multidrug-resistant species. The role of CRISPR-cas systems in inhibition of HGT in prokaryotes and its loss due to presence of various stressors in the environment is also focused in the study. IncF and IncH plasmids were identified in all strains of E. faecalis and K. pneumoniae, carrying Beta-lactam and fluoroquinolone resistance genes, whereas sal3, phiCTX, and SEN34 prophages harbored aminoglycoside resistance genes (aadA, aac). Various MGEs present in selected environmental niches that aid the bacterial genome plasticity and transfer of ARGs contributing to its spread are also identified.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable
Code availability
Not applicable
References
Alcock BP, Raphenya AR, Lau TTY et al (2020) CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935
Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:1–10. https://doi.org/10.1186/1471-2164-12-402
Amarasiri M, Sano D, Suzuki S (2020) Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit Rev Environ Sci Technol 50:2016–2059. https://doi.org/10.1080/10643389.2019.1692611
Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. https://doi.org/10.1093/nar/gkw387
Bengtsson-Palme J, Larsson DGJ (2015) Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 13:396
Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2018) Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 42:68–80
Berendonk TU, Manaia CM, Merlin C et al (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317
Bergeron S, Boopathy R, Nathaniel R et al (2015) Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int Biodeterior Biodegrad 102:370–374. https://doi.org/10.1016/j.ibiod.2015.04.017
Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5:28564. https://doi.org/10.3402/iee.v5.28564
Bikard D, Euler CW, Jiang W et al (2014) Exploiting CRISPR-cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150. https://doi.org/10.1038/nbt.3043
Bombaywala S, Dafale NA, Jha V et al (2020) Study of indiscriminate distribution of restrained antimicrobial resistome of different environmental niches. Environ Sci Pollut Res 28:10780–10790. https://doi.org/10.1007/s11356-020-11318-6
Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52
Calero-Cáceres W, Muniesa M (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 95:11–18. https://doi.org/10.1016/j.watres.2016.03.006
Calero-Cáceres W, Méndez J, Martín-Díaz J, Muniesa M (2017) The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environ Pollut 223:384–394. https://doi.org/10.1016/j.envpol.2017.01.035
Carattoli A, Zankari E, Garciá-Fernández A et al (2014) In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14
Chen B, Hao L, Guo X et al (2015) Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China. Environ Sci Pollut Res 22:13950–13959. https://doi.org/10.1007/s11356-015-4636-y
Cheng W, Li J, Wu Y et al (2016) Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: a case study. J Hazard Mater 304:18–25. https://doi.org/10.1016/j.jhazmat.2015.10.037
Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. https://doi.org/10.1038/nbt.3011
Czekalski N, Sigdel R, Birtel J et al (2015) Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ Int 81:45–55. https://doi.org/10.1016/j.envint.2015.04.005
Dafale NA, Semwal UP, Rajput RK, Singh GN (2016) Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. J Pharm Anal 6:207–213
Dafale NA, Srivastava S, Purohit HJ (2020) Zoonosis: an emerging link to antibiotic resistance under “one health approach.” Indian J Microbiol 60:139–152
De Mol ML, Snoeck N, De Maeseneire SL, Soetaert WK (2018) Hidden antibiotics: where to uncover? Biotechnol Adv 36:2201–2218
Durante-Mangoni E, Signoriello G, Andini R et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358. https://doi.org/10.1093/cid/cit253
Faure G, Shmakov SA, Yan WX et al (2019) CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat Rev Microbiol 17:513–525. https://doi.org/10.1038/s41579-019-0204-7
Fitzpatrick D, Walsh F (2016) Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol 92:1–8. https://doi.org/10.1093/femsec/fiv168
Gillings MR, Gaze WH, Pruden A et al (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279. https://doi.org/10.1038/ismej.2014.226
Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. https://doi.org/10.1093/nar/gkm360
Guo J, Li J, Chen H et al (2017) Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res 123:468–478. https://doi.org/10.1016/j.watres.2017.07.002
Harnisz M, Kiedrzyńska E, Kiedrzyński M et al (2020) The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. Sci Total Environ 741:140466. https://doi.org/10.1016/j.scitotenv.2020.140466
Hatosy SM, Martiny AC (2015) The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 81:7593–7599. https://doi.org/10.1128/AEM.00736-15
Haudiquet M, Buffet A, Rendueles O, Rocha EPC (2021) Interplay between the cell envelope and mobile genetic elements shapes gene flow in populations of the nosocomial pathogen klebsiella pneumoniae. PLoS Biol 19:. https://doi.org/10.1371/JOURNAL.PBIO.3001276
He LY, Ying GG, Liu YS et al (2016) Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ Int 92–93:210–219. https://doi.org/10.1016/j.envint.2016.03.023
Hille F, Charpentier E (2016) CRISPR-cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci 371
Hultman J, Tamminen M, Pärnänen K, et al (2018) Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. FEMS Microbiol Ecol 94:. https://doi.org/10.1093/femsec/fiy038
Jiang X, Ellabaan MMH, Charusanti P et al (2017) Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms15784
Karkman A, Pärnänen K, Larsson DGJ (2019) Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun 10:1–8. https://doi.org/10.1038/s41467-018-07992-3
Kleinheinz KA, Joensen KG, Larsen MV (2014) Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:e27943. https://doi.org/10.4161/bact.27943
Klümper U, Riber L, Dechesne A et al (2015) Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 9:934–945. https://doi.org/10.1038/ismej.2014.191
Lagier JC, Dubourg G, Million M et al (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550
Lee S, Mir RA, Park SH et al (2020) Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 46:1–14
Lekunberri I, Villagrasa M, Balcázar JL, Borrego CM (2017) Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Sci Total Environ 601–602:206–209. https://doi.org/10.1016/j.scitotenv.2017.05.174
Lerminiaux NA, Cameron ADS (2019) Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 65:34–44. https://doi.org/10.1139/cjm-2018-0275
Li LG, Xia Y, Zhang T (2017a) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 11:651–662. https://doi.org/10.1038/ismej.2016.155
Li N, Sheng GP, Lu YZ et al (2017b) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res 111:204–212. https://doi.org/10.1016/j.watres.2017.01.010
Liu YY, Wang Y, Walsh TR et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. https://doi.org/10.1016/S1473-3099(15)00424-7
Liu M, Li Q, Sun H et al (2018) Impact of salinity on antibiotic resistance genes in wastewater treatment bioreactors. Chem Eng J 338:557–563. https://doi.org/10.1016/j.cej.2018.01.066
Liu X, Guo X, Liu Y et al (2019) A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response. Environ Pollut 254:112996
Lopez-Cortes LE, Cisneros JM, Fernandez-Cuenca F et al (2014) Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: analysis of a multicentre prospective cohort. J Antimicrob Chemother 69:3119–3126. https://doi.org/10.1093/jac/dku233
Ma L, Li AD, Le YX, Zhang T (2017) The prevalence of integrons as the carrier of antibiotic resistance genes in natural and man-made environments. Environ Sci Technol 51:5721–5728. https://doi.org/10.1021/acs.est.6b05887
Mackow NA, Shen J, Adnan M et al (2019) CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS One 14:e0225131. https://doi.org/10.1371/journal.pone.0225131
Mahendra C, Christie KA, Osuna BA et al (2020) (2020) Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 54(5):620–629. https://doi.org/10.1038/s41564-020-0692-2
Mao D, Yu S, Rysz M et al (2015) Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res 85:458–466. https://doi.org/10.1016/j.watres.2015.09.010
Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61
Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123
Mitchell S, Bull M, Muscatello G et al (2021) The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol
Nadeem SF, Gohar UF, Tahir SF et al (2020) Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 46:578–599
Nepal KK, Wang G (2019) Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 37:1–20
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16:1–14. https://doi.org/10.1186/s12864-015-2153-5
Palmer KL, Gilmore MS (2010) Multidrug-resistant enterococci lack CRISPR-cas. MBio 1(4):e00227–10. https://doi.org/10.1128/mBio.00227-10
Pang Z, Raudonis R, Glick BR et al (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192
Parmar KM, Gaikwad SL, Dhakephalkar PK et al (2017a) Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front Microbiol 8:559
Parmar KM, Hathi ZJ, Dafale NA (2017b) Control of multidrug-resistant gene flow in the environment through bacteriophage intervention. Appl Biochem Biotechnol 181:1007–1029
Parmar K, Dafale N, Pal R et al (2018) An insight into phage diversity at environmental habitats using comparative metagenomics approach. Curr Microbiol 75:132–141. https://doi.org/10.1007/s00284-017-1357-0
Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E (2019) Antibiotic resistance genes identified in wastewater treatment plant systems – a review. Sci Total Environ 697:134023
Perry J, Waglechner N, Wright G (2016) The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med 6:a025197. https://doi.org/10.1101/cshperspect.a025197
Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928. https://doi.org/10.3389/fmicb.2018.02928
Pursey E, Dimitriu T, Paganelli FL et al (2022) CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philos Trans R Soc B 377:. https://doi.org/10.1098/RSTB.2020.0464
Rodriguez-Mozaz S, Chamorro S, Marti E et al (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242. https://doi.org/10.1016/j.watres.2014.11.021
Rodríguez-Rubio L, Gutiérrez D, Donovan DM et al (2015) Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Crit Rev Biotechnol 36:1–11. https://doi.org/10.3109/07388551.2014.993587
Ross J, Topp E (2015) Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. Appl Environ Microbiol 81:7905–7913. https://doi.org/10.1128/AEM.02363-15
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73(5):1121–1137. https://doi.org/10.1093/jac/dkx488
Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155(5):1372–1382. https://doi.org/10.1053/j.gastro.2018.07.007
Saxena P, Hiwrale I, Das S et al (2021) Profiling of emerging contaminants and antibiotic resistance in sewage treatment plants: an Indian perspective. J Hazard Mater 408:124877. https://doi.org/10.1016/j.jhazmat.2020.124877
Shao S, Wu X (2020) Microbial degradation of tetracycline in the aquatic environment: a review. Crit Rev Biotechnol 40:1010–1018. https://doi.org/10.1080/07388551.2020.1805585
Shao S, Hu Y, Cheng J, Chen Y (2018) Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol 38:1195–1208. https://doi.org/10.1080/07388551.2018.1471038
Sharma VK, Johnson N, Cizmas L et al (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714. https://doi.org/10.1016/j.chemosphere.2015.12.084
Shehreen S, Chyou TY, Fineran PC, Brown CM (2019) Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos Trans R Soc B Biol Sci 374:. https://doi.org/10.1098/rstb.2018.0384
Shen J, Zhou J, Xu Y, Xiu Z (2020) Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics 112:998–1010. https://doi.org/10.1016/j.ygeno.2019.06.016
Smith LM, Jackson SA, Malone LM et al (2021) (2021) The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nat Microbiol 62(6):162–172. https://doi.org/10.1038/s41564-020-00822-7
Stalder T, Press MO, Sullivan S et al (2019) Linking the resistome and plasmidome to the microbiome. ISME J 13:2437–2446. https://doi.org/10.1038/s41396-019-0446-4
Sun Q, Li Y, Li M et al (2016) PPCPs in Jiulong River estuary (China): spatiotemporal distributions, fate, and their use as chemical markers of wastewater. Chemosphere 150:596–604. https://doi.org/10.1016/j.chemosphere.2016.02.036
Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
Tiwari B, Sellamuthu B, Ouarda Y et al (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol 224:1–12
Touchon M, Charpentier S, Pognard D et al (2012) Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiol (united Kingdom) 158:2997–3004. https://doi.org/10.1099/mic.0.060814-0
van Belkum A, Soriaga LB, LaFave MC, et al (2015) Phylogenetic distribution of CRISPR-Cas systems in antibiotic- resistant pseudomonas aeruginosa. MBio 6:. https://doi.org/10.1128/mBio.01796-15
Van Goethem MW, Pierneef R, Bezuidt OKI et al (2018) A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40. https://doi.org/10.1186/s40168-018-0424-5
Von Wintersdorff CJH, Penders J, Van Niekerk JM et al (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173
Wang J, Chen X (2020) Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: an overview. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1835124
Wang FH, Qiao M, Chen Z et al (2015) Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J Hazard Mater 299:215–221. https://doi.org/10.1016/j.jhazmat.2015.05.028
Wang J, Wang L, Zhu L et al (2020) Antibiotic resistance in agricultural soils: source, fate, mechanism and attenuation strategy. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1835438
Watanabe S, Cui B, Kiga K et al (2019) Composition and diversity of CRISPR-Cas13a systems in the Genus Leptotrichia. Front Microbiol 10:2838. https://doi.org/10.3389/fmicb.2019.02838
Wu S, Wu Y, Cao B et al (2021) An invisible workforce in soil: the neglected role of soil biofilms in conjugative transfer of antibiotic resistance genes. Crit Rev Environ Sci Technol 1–29. https://doi.org/10.1080/10643389.2021.1892015
Xiong W, Sun Y, Zhang T et al (2015) Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China. Microb Ecol 70:425–432. https://doi.org/10.1007/s00248-015-0583-x
Xu J, Xu Y, Wang H et al (2015) Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119:1379–1385. https://doi.org/10.1016/j.chemosphere.2014.02.040
Xue G, Jiang M, Chen H et al (2019) Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants. Crit Rev Environ Sci Technol 49:1623–1674. https://doi.org/10.1080/10643389.2019.1579629
Yan J, Bassler BL (2019) Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26:15–21
Yang Y, Song W, Lin H et al (2018) Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int 116:60–73
Yosef I, Manor M, Kiro R, Qimron U (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 112:7267–7272. https://doi.org/10.1073/pnas.1500107112
Yuan Q-B, Guo M-T, Yang J (2015) Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. PLoS One 10:e0119403. https://doi.org/10.1371/journal.pone.0119403
Zaman S Bin, Hussain MA, Nye R, et al (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:. https://doi.org/10.7759/cureus.1403
Zhang S, Han B, Gu J et al (2015) Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Chemosphere 135:138–145. https://doi.org/10.1016/j.chemosphere.2015.04.001
Zhang H, Cheng Q-X, Liu A-M et al (2017) A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol 8:812. https://doi.org/10.3389/fmicb.2017.00812
Zhao Y, Yang QE, Zhou X et al (2020) Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1777815
Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104. https://doi.org/10.1016/j.biotechadv.2016.12.003
Acknowledgements
The funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 820718 and the European Commission and the Department of Science and Technology of India (DST) are gratefully acknowledged for carrying out the work. The manuscript has been checked for plagiarism by Knowledge Resource Centre, CSIR-NEERI, Nagpur, India, and assigned KRC No.: CSIR-NEERI/KRC/2021/MARCH/EBGD-DRC/1
Author information
Authors and Affiliations
Contributions
S. D. performed literature search, data analysis, data curation, and original draft preparation; S. B. performed data analysis and drafting of the manuscript; S. S. helped in the drafting of the manuscript and literature review; A. K. supervision and reviewed the manuscript; R. D. supervision and reviewed the manuscript; N. D. conceptualized and designed the study, supervision for data curation, and final manuscript drafting.
Corresponding author
Ethics declarations
Ethics approval
Not applicable
Consent of participants
None
Consent of publication
All authors allow the publication of the paper.
Conflict of interest
The authors declare no competing interests.
Additional information
Responsible Editor: Robert Duran
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Das, S., Bombaywala, S., Srivastava, S. et al. Genome plasticity as a paradigm of antibiotic resistance spread in ESKAPE pathogens. Environ Sci Pollut Res 29, 40507–40519 (2022). https://doi.org/10.1007/s11356-022-19840-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-022-19840-5