Skip to main content

Advertisement

Log in

A modified exergy evaluation of using carbon-black/water/EG nanofluids as coolant of photovoltaic modules

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To provide the progressive global demand for energy, the use of renewable energies is being rapidly developed. Since solar radiation is available in most parts of the earth, the photovoltaic (PV) power plant is one of the worthwhile solutions. As a deficiency, temperature rise in photovoltaic cells leads to a drop in their electrical output power. In this experimental study, the circulation of carbon black nanofluid was investigated as a coolant of PV modules. Both water and ethylene glycol (EG) were used as the base fluids. It is found that all modified cases generate more output power than the conventional one. For instance, water + carbon nanofluid yields 54% more output power compared with the conventional one. To make a real assessment of using nanofluid as a coolant, the electrical consumption by pump and fan must be counted. Therefore, in this study, the net output power is calculated. In the cases of EG and EG + carbon, the net output powers get lower than the conventional module. So, they are not justifiable. In this paper, a modified formula is proposed to calculate the exergy efficiency, in order to achieve more accurate results. Accordingly, from an exergy viewpoint, 16.3% and 4.5% in electrical and thermal exergy efficiencies are achieved, when water + carbon nanofluid was used. Moreover, the values of entropy generation and lost exergy were reported for all considered cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A:

Area (m2)

Cp :

Specific heat (J kg1 K1)

EX:

Exergy (W)

FF:

Fill factor

G:

Solar irradiation (W m2)

h:

Heat transfer coefficient (W m2 K1)

I:

Current (A)

P:

Power (W)

PV:

Photovoltaic

PV/T:

Photovoltaic thermal

Q̇:

Heat emitted to the surrounding (W)

S:

Entropy generation (W K1)

T:

Temperature (℃)

V:

Voltage (V)

ΔT:

Temperature difference (℃)

Pf :

Packing factor

Cf :

Conversion factor

ṁ:

Flow rate of circulating nanofluid (kg s1)

f:

Fluid

η:

Energy efficiency (%)

Ψ:

Exergy efficiency (%)

ρ:

Density (kg m3)

v:

Kinematic viscosity (m2 s1)

ϕ:

Mass concentration (%)

amb:

Ambient

cell:

Cell

i:

Input

o:

Output

mp:

Maximum power

OC:

Open circuit

SC:

Short circuit

sun:

Sun

th:

Thermal

sky:

Sky

m:

Module

el:

Electrical

Lost:

Lost

gen:

Generate

net:

Net

pump:

Pump

np:

Nanoparticle

nf:

Nanofluid

bf:

Base fluid

References

  • Abadeh A, Rejeb O, Sardarabadi M, Menezo C, Passandideh-Fard M, Jemni A (2018) Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs). Energy 159:1234–1243

    Article  CAS  Google Scholar 

  • Abdollahi N, Rahimi M (2020) Heat transfer enhancement in a hybrid PV/PCM based cooling tower using Boehmite nanofluid. Heat Mass Transf 56:859–869

    Article  CAS  Google Scholar 

  • Aberoumand S, Ghamari S, Shabani B (2018) Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Sol Energy 165:167–177

    Article  CAS  Google Scholar 

  • Absalan H, Zarei H (2019) Synthesis of Quaternary Cu (In x Ga 1–x) Se 2 Nanoparticles for photovoltaic applications using heating-up method. Iranian J Sci Technol Trans: Sci 43:309–314

    Article  Google Scholar 

  • Afshar NR, Fahmi H (2019) Impact of climate change on water resources in Iran. Int J Energy Water Res 3:55–60

    Article  Google Scholar 

  • AL-Musawi AIA, Taheri A, Farzanehnia A, Sardarabadi M, Passandideh-Fard M (2019) Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim 137:623–636

    Article  CAS  Google Scholar 

  • Al-Shamani AN, Sopian K, Mat S, Hasan HA, Abed AM, Ruslan MH (2016) Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Convers Manage 124:528–542

    Article  CAS  Google Scholar 

  • Al-Waeli AH, Chaichan MT, Kazem HA, Sopian K (2017) Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manage 148:963–973

    Article  CAS  Google Scholar 

  • Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K, Safaei J (2018) Numerical study on the effect of operating nanofluids of photovoltaic thermal system (PV/T) on the convective heat transfer. Case Stud Therm Eng 12:405–413

    Article  Google Scholar 

  • Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K (2019) Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud Therm Eng 13:100392

    Article  Google Scholar 

  • Anonymous (2019): Institute for Sustainable Energy Policies (ISEP), <available in: https://isep-energychart.com/en/1105/>.

  • Arani AAA, Pourmoghadam F (2019) Experimental investigation of thermal conductivity behavior of MWCNTS-Al 2 O 3/ethylene glycol hybrid nanofluid: providing new thermal conductivity correlation. Heat Mass Transf 55:2329–2339

    Article  CAS  Google Scholar 

  • Asadikia A, Mirjalily SAA, Nasirizadeh N, Kargarsharifabad H (2020) Hybrid nanofluid based on CuO nanoparticles and single-walled carbon nanotubes: optimization, thermal, and electrical properties. Int J Nano Dimens 11:277–289

    CAS  Google Scholar 

  • Asadikia A, Mirjalily SAA, Nasirizadeh N, Kargarsharifabad H (2020) Characterization of thermal and electrical properties of hybrid nanofluids prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles. Int Commun Heat Mass Transfer 117:104603

    Article  CAS  Google Scholar 

  • Bakirci K, Kirtiloglu Y (2022) Effect of climate change to solar energy potential: a case study in the Eastern Anatolia Region of Turkey. Environ Sci Pollut Res 29(2):2839–2852

  • Bayrak F, Abu-Hamdeh N, Alnefaie KA, Öztop HF (2017) A review on exergy analysis of solar electricity production. Renew Sustain Energy Rev 74:755–770

    Article  Google Scholar 

  • Bozorgan N, Shafahi M (2015) Performance evaluation of nanofluids in solar energy: a review of the recent literature. Micro Nano Syst Lett 3:5

    Article  Google Scholar 

  • Brekke N, Dale J, DeJarnette D, Hari P, Orosz M, Roberts K, Tunkara E, Otanicar T (2018) Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption. Renewable Energy 123:683–693

    Article  CAS  Google Scholar 

  • Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J (2009) Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl Energy 86:310–316

    Article  Google Scholar 

  • Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. John Wiley & Sons

    Book  Google Scholar 

  • Ebaid MS, Ghrair AM, Al-Busoul M (2018) Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture. Energy Convers Manage 155:324–343

    Article  CAS  Google Scholar 

  • Farzanehnia A, Sardarabadi M (2019): Exergy in photovoltaic/thermal nanofluid-based collector systems, exergy and its application-toward green energy production and sustainable environment. IntechOpen

  • Fayaz H, Nasrin R, Rahim N, Hasanuzzaman M (2018) Energy and exergy analysis of the PVT system: effect of nanofluid flow rate. Sol Energy 169:217–230

    Article  CAS  Google Scholar 

  • Firoozzadeh M, Shiravi AH, Shafiee M (2019) An experimental study on cooling the photovoltaic modules by fins to improve power generation: economic assessment. Iran (Iranica) J Energy Environ 10:80–84

    CAS  Google Scholar 

  • Firoozzadeh M, Shiravi AH, Shafiee M (2020) Different methods of using phase change materials (PCMs) as coolant of photovoltaic modules: a review. J Energy Manag Technol 4:30–36

    Google Scholar 

  • Firoozzadeh M, Shiravi AH, Lotfi M, Aidarova S, Sharipova A (2021) Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: a case study. Energy 225:120219

    Article  CAS  Google Scholar 

  • Firoozzadeh M, Shiravi AH, Shafiee M (2021) Thermodynamics assessment on cooling photovoltaic modules by phase change materials (PCMs) in critical operating temperature. J Therm Anal Calorim 144:1239–1251

    Article  CAS  Google Scholar 

  • Firoozzadeh M, Shiravi AH, Chandel SS (2022): Experimental analysis of enhancing cooling of photovoltaic modules using straight and zig-zag fins. Journal of thermal analysis and calorimetry

  • Fudholi A, Zohri M, Jin GL, Ibrahim A, Yen CH, Othman MY, Ruslan MH, Sopian K (2018) Energy and exergy analyses of photovoltaic thermal collector with ∇-groove. Sol Energy 159:742–750

    Article  Google Scholar 

  • Ghadiri M, Sardarabadi M, Passandideh-fard M, Moghadam AJ (2015) Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manage 103:468–476

    Article  CAS  Google Scholar 

  • Hegazy MM, El-Sebaii A, Ramadan MR, Aboul-Enein S, Khallaf AEM (2020) Comparative study of three different designs of a hybrid PV/T double-pass finned plate solar air heater. Environ Sci Pollut Res 27(26):32270–32282

  • Heidari H, TarafdarHagh M (2019) Optimal reconfiguration of solar photovoltaic arrays using a fast parallelized particle swarm optimization in confront of partial shading. Int J Eng 32:1177–1185

    Google Scholar 

  • Hosseinzadeh M, Kazemian A, Sardarabadi M, Passandideh-Fard M (2018) Experimental investigation of using water and ethylene glycol as coolants in a photovoltaic thermal system. Modares Mech Eng 17:12–20

    Google Scholar 

  • Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M (2018) Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy 147:636–647

    Article  CAS  Google Scholar 

  • Huang D, Fan S (2004) Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution. J Chem Eng Data 49:1479–1482

    Article  CAS  Google Scholar 

  • Hussien HA, Noman AH, Abdulmunem AR (2015) Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (Al2O3-water). Eng Technol J 33:889–901

    Google Scholar 

  • IRENA (2019): International renewable energy agency, Available in: https://www.irena.org.

  • Jaszczur M, Koshti A, Nawrot W, Sędor P (2020) An investigation of the dust accumulation on photovoltaic panels. Environ Sci Pollut Res 27:2001–2014

    Article  Google Scholar 

  • Jeter SM (1981) Maximum conversion efficiency for the utilization of direct solar radiation. Sol Energy 26:231–236

    Article  Google Scholar 

  • Joshi AS, Dincer I, Reddy BV (2009) Thermodynamic assessment of photovoltaic systems. Sol Energy 83:1139–1149

    Article  Google Scholar 

  • Kabeel AE, Abdelgaied M, Sathyamurthy R, Kabeel A (2021) A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis. Environ Sci Pollut Res 28:7955–7980

    Article  Google Scholar 

  • Kalogirou SA, Karellas S, Braimakis K, Stanciu C, Badescu V (2016) Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci 56:106–137

    Article  Google Scholar 

  • Kazemian A, Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M (2018) Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy 162:210–223

    Article  CAS  Google Scholar 

  • Khanjari Y, Kasaeian AB, Pourfayaz F (2017) Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl Therm Eng 115:178–187

    Article  CAS  Google Scholar 

  • Maadi SR, Kolahan A, Passandideh-Fard M, Sardarabadi M, Moloudi R (2017) Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Convers Manage 150:515–531

    Article  CAS  Google Scholar 

  • Manikandan S, Selvam C, Pavan Sai Praful P, Lamba R, Kaushik SC, Zhao D, Yang R (2020) A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim 140(3):1003–1014

  • Mirzaei Darian M, Ghorreshi AM (2021) Comparison of the effect of temperature parameter on the functionality of tracking and fixed photovoltaic systems: a case study in Tehran, Iran. Scientia Iranica 28(3):1298–1305

  • Moravej M, Doranehgard MH, Razeghizadeh A, Namdarnia F, Karimi N, Li LK, Mozafari H, Ebrahimi Z (2021) Experimental study of a hemispherical three-dimensional solar collector operating with silver-water nanofluid. Sustain Energy Technol Assess 44:101043

    Google Scholar 

  • Naghdbishi A, Yazdi ME, Akbari G (2020) Experimental investigation of the effect of multi-wall carbon nanotube–water/glycol based nanofluids on a PVT system integrated with PCM-covered collector. Appl Thermal Eng 178:115556

    Article  CAS  Google Scholar 

  • Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M (2018) Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renewable Energy 121:286–300

    Article  CAS  Google Scholar 

  • Paryani S, Ramazani SAA (2018) Investigation of the combination of TiO2 nanoparticles and drag reducer polymer effects on the heat transfer and drag characteristics of nanofluids. Can J Chem Eng 96:1430–1440

    Article  CAS  Google Scholar 

  • Petela R (1964): Exergy of heat radiation.

  • Rejeb O, Sardarabadi M, Ménézo C, Passandideh-Fard M, Dhaou MH, Jemni A (2016) Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers Manage 110:367–377

    Article  CAS  Google Scholar 

  • Saffarian MR, Moravej M, Doranehgard MH (2020) Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renewable Energy 146:2316–2329

    Article  CAS  Google Scholar 

  • Sahin AD, Dincer I, Rosen MA (2007) Thermodynamic analysis of solar photovoltaic cell systems. Sol Energy Mater Sol Cells 91:153–159

    Article  CAS  Google Scholar 

  • Sahoo RR, Ghosh P, Sarkar J (2017) Energy and exergy comparisons of water based optimum brines as coolants for rectangular fin automotive radiator. Int J Heat Mass Transf 105:690–696

    Article  CAS  Google Scholar 

  • Sardarabadi M, Passandideh-Fard M (2016) Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells 157:533–542

    Article  CAS  Google Scholar 

  • Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66:264–272

    Article  CAS  Google Scholar 

  • Sarhaddi F (2018) Experimental performance assessment of a photovoltaic/thermal stepped solar still. Energy Environ 29:392–409

    Article  CAS  Google Scholar 

  • Sarhaddi F, Farahat S, Ajam H, Behzadmehr A (2010) Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy Buildings 42:2184–2199

    Article  Google Scholar 

  • Sedaghat A, Karami, MR, Eslami M (2020) Improving performance of a photovoltaic panel by pin fins: a theoretical analysis. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 44(4):997–1004

  • Selimefendigil F, Öztop HF, Doranehgard MH, Karimi N (2021) Phase change dynamics in a cylinder containing hybrid nanofluid and phase change material subjected to a rotating inner disk. J Energy Storage 42:103007

    Article  Google Scholar 

  • Shafiee M, Akbari A (2018) Optimization of UHMWPE/graphene nanocomposite preparation by single-supported Ziegler-Natta catalytic system via RSM. Polym Adv Technol 29:1889–1894

    Article  CAS  Google Scholar 

  • Shiravi AH, Firoozzadeh M (2021) Thermodynamic and environmental assessment of mounting fin at the back surface of photovoltaic panels. J Appl Comput Mech 7:1956–1963

    Google Scholar 

  • Shiravi AH, Shafiee M, Firoozzadeh M, Bostani H, Bozorgmehrian M (2021) Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger. Therm Anal Calorim 145:597–607

    Article  CAS  Google Scholar 

  • Shiravi AH, Firoozzadeh M, Lotfi M (2022) Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using central composite design. Energy 238:121633

    Article  Google Scholar 

  • Siddiqui R, Bajpai U (2012) Correlation between thicknesses of dust collected on photovoltaic module and difference in efficiencies in composite climate. Int J Energy Environ Eng 3:1–7

    Article  Google Scholar 

  • Sivakumar B, Navakrishnan S, Cibi MR, Senthil R (2021) Experimental study on the electrical performance of a solar photovoltaic panel by water immersion. Environ Sci Pollut Res 28(31):42981–42989

  • Spanner DC (1964) Introduction to thermodynamics. Introduction to thermodynamics

  • Taheri A, Kazemi M, Amini M, Sardarabadi M, Kianifar A (2021) The performance assessment of nanofluid-based PVTs with and without transparent glass cover: outdoor experimental study with thermodynamics analysis. J Therm Anal Calorim 143(6):4025–4037

  • Tahmasebi N, Maleki Z, Farahnak P (2019) Enhanced photocatalytic activities of Bi2WO6/BiOCl composite synthesized by one-step hydrothermal method with the assistance of HCl. Mater Sci Semicond Process 89:32–40

    Article  CAS  Google Scholar 

  • Tashtoush B, Al-Oqool A (2019) Factorial analysis and experimental study of water-based cooling system effect on the performance of photovoltaic module. Int J Environ Sci Technol 16:3645–3656

    Article  Google Scholar 

  • Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E (2017) Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sustain Energy Rev 76:323–352

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A. H. Shiravi: Supervision, writing-review & editing, funding acquisition, and project administration.

M. Firoozzadeh: Investigation, methodology, and writing-original draft.

M. Passandideh-Fard: Visualization and writing-review & Editing.

Corresponding author

Correspondence to Amir Hossein Shiravi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiravi, A.H., Firoozzadeh, M. & Passandideh-Fard, M. A modified exergy evaluation of using carbon-black/water/EG nanofluids as coolant of photovoltaic modules. Environ Sci Pollut Res 29, 57603–57617 (2022). https://doi.org/10.1007/s11356-022-19769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19769-9

Keywords

Navigation