Skip to main content
Log in

Clean dealkalization technology from aluminum industry hazardous tailings—red mud by displacement with Mg-based agent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Red mud is a kind of strong alkaline hazardous slag discharged from aluminum metallurgy industry. In this study, the water immersion with high temperature and high pressure was developed for the selective dealkalization from red mud by adding Mg-based additives. The removal efficiency of alkali could reach 92% by using 12% MgCl2 with 9 mL/g at 250 °C for 60 min. The MgCl2 was the most effective leaching reagent to promote the decomposion of cancrinite lattice. The new minerals bearing Mg, i.e., chlorite (Mg5Al2Si3O10(OH)8) and pyrope (Mg3Al2Si3O12) could be formed, which was in favor of transforming the structural alkali into the free alkali by the analysis and validation of XRD and SEM-EDS. The dealkalization process was mainly controlled by chemical reactions according to the analysis of unreacted shrinking core model (USCM) of leaching kinetics. The leaching kinetics equation of 1 − (1 − x)1/3 = 32.2 × exp[4582.6 / T] × t was built and the apparent activation energy of 38.1 kJ/mol was obtained. This method may provide a new and cleaner way for the efficient dealkalization of red mud and a basis for the utilization of leaching residue as the soil amendment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable

References

  • Abhilash HS, Schippers A (2021) Distribution of scandium in red mud and extraction using Gluconobacter oxydans. Hydrometallurgy 202:105621

    Article  CAS  Google Scholar 

  • Agrawal S, Dhawan N (2021) Microwave acid baking of red mud for extraction of titanium and scandium values. Hydrometallurgy 204:105704

    Article  CAS  Google Scholar 

  • Ahamed AM, Pons MN, Ricoux Q, Goettmann F, Lapicque F (2020) Production of electrolytic iron from red mud in alkaline media. J Environ Manage 266:110547

    Article  CAS  Google Scholar 

  • Bao SX, Qin L, Zhang YM, Luo YP, Huang XL (2021) A combined calcination method for activating mixed shale residue and red mud for preparation of geopolymer. Construction and Building Materials 297:123789

    Article  Google Scholar 

  • Deng B, Li GH, Luo J, Ye Q, Jiang T (2017) Enrichment of Sc2O3 and TiO2 from bauxite ore residues. J Hazard Mater 331:71–80

    Article  CAS  Google Scholar 

  • Gong ZQ, Ma J, Wang D, Niu SL, Yan BH, Shi QL, Lu CM, Crittenden J (2020) Insights into modified red mud for the selective catalytic reduction of NOX: activation mechanism of targeted leaching. Journal of Hazardous Materials 394:122536

    Article  CAS  Google Scholar 

  • Jin JP, Liu X, Yuan S, Gao P, Li YJ, Zhang H, Meng XZ (2021) Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals. J Ind Eng Chem 98:298–307

    Article  CAS  Google Scholar 

  • Li RB, Zhang TG, Liu Y, Gao P, Lv GZ, Xie LQ (2016) Calcification-carbonation method for red mud processing. J Hazard Mater 316:94–101

    Article  CAS  Google Scholar 

  • Li SC, Zhang J, Li ZF, Liu C, Chen JP (2021) Feasibility study on grouting material prepared from red mud and metallurgical wastewater based on synergistic theory. Journal of Hazardous Materials 407:124358

    Article  CAS  Google Scholar 

  • Li SW, Pan J, Zhu DQ, Guo ZQ, Shi Y, Dong T, Lu SH, Tian HY (2021) A new route for separation and recovery of Fe, Al and Ti from red mud. Resources, Conservation and Recycling 168:105314

    Article  CAS  Google Scholar 

  • Li W, Yan XD, Niu ZP, Zhu XB (2021) Selective recovery of vanadium from red mud by leaching with using oxalic acid and sodium sulfite. Journal of Environmental Chemical Engineering 9:105669

    Article  CAS  Google Scholar 

  • Li XF, Ye YZ, Xue SG, Jiang J, Wu C, Kong XF, Hartley W, Li YW (2018) Leaching optimization and dissolution behavior of alkaline anions in bauxite residue. Transact Nonferrous Metals Soc China 28:1248–1255

    Article  CAS  Google Scholar 

  • Li YW, Jiang J, Xue SG, Millar GJ, Kong XF, Li XF, Li M, Li CX (2018) Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue. Transact Nonferrous Metals Soc China 28:2125–2134

    Article  CAS  Google Scholar 

  • Lin LQ, Lu ZM, Zhang W (2021) Recovery of lithium and cobalt from lithium-ion batteries using organic aqua regia (OAR): assessment of leaching kinetics and global warming potentials. Res, Conservation and Recycling 167:105416

    Article  CAS  Google Scholar 

  • Lin JY, Kim M, Li D, Kim H, Huang CP (2020) The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization. Chemosphere 247:125867

    Article  CAS  Google Scholar 

  • Liu B, Zhang YY, Zhang YS, Liu E, Xu KL, Tian ZW, Chen JS, Meng XB, Yan K (2021) Study on resource utilization of composite powder suppressor prepared from acrylic fiber waste sludge. Journal of Cleaner Production 291:125914

    Article  CAS  Google Scholar 

  • Liu X, Han YX, He FY, Gao P, Yuan S (2021) Characteristic, hazard and iron recovery technology of red mud-a critical review. Journal of Hazardous Materials 420:126542

    Article  CAS  Google Scholar 

  • Liu ZB, Li HX, Huang MM, Jia DM, Zhang N (2017) Effects of cooling method on removal of sodium from active roasting red mud based on water leaching. Hydrometallurgy 167:92–100

    Article  CAS  Google Scholar 

  • Luo MX, Qi XJ, Zhang YR, Ren YF, Tong JC, Chen ZN, Hou YM, Yeerkebai N, Wang HT, Feng SJ, Li FT (2017) Study on dealkalization and settling performance of red mud. Environ Sci Pollut Res 24:1794–1802

    Article  CAS  Google Scholar 

  • Luo ZT, Xiao YL, Zhang L, Wang X, Yang JJ (2013) Multi-stage cycle dealkalization and alkali recovery process of red mud slurry. Journal of University of Jinan 27:369–372

    CAS  Google Scholar 

  • Lu FH, Xiao TF, Lin J, Li AJ, Long Q, Huang F, Xiao LH, Li X, Wang JW, Xiao QX, Chen HY (2018) Recovery of galliun from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure. Hydrometallurgy 175:124–132

    Article  CAS  Google Scholar 

  • Lyu F, Hu YH, Wang L, Sun W (2021) Dealkalization processes of bauxite residue: a comprehensive review. Journal of Hazardous Materials 403:123671

    Article  CAS  Google Scholar 

  • Lyu F, Niu SL, Wang L, Liu RQ, Sun W, He DD (2021) Efficient removal of Pb(II) ions from aqueous solution by modified red mud. Journal of Hazardous Materials 406:124678

    Article  CAS  Google Scholar 

  • Ozden B, Brennan C, Landsberger S (2019) Investigation of bauxite residue (red mud) in terms of its environmental risk. Environ Sci Pollut Res 319:339–346

    CAS  Google Scholar 

  • Pasechnik LA, Skachkov VM, Chufarov AY, Suntsov AY, Yatsenko SP (2021) High purity scandium extraction from red mud by novel simple technology. Hydrometallurgy 202:105597

    Article  CAS  Google Scholar 

  • Pepper RA, Couperthwaite SJ, Millar GJ (2016) Comprehensive examination of acid leaching behavior of mineral phases from red mud: recovery of Fe, Al, Ti, and Si. Miner Eng 99:8–18

    Article  CAS  Google Scholar 

  • Rychkov V, Botalov M, Kirillov E, Kirillov S, Semenishchev V, Bunkov G, Smyshlyaev D (2021) Intensification of carbonate scandium leaching from red mud (bauxite residue). Hydrometallurgy 199:105524

    Article  CAS  Google Scholar 

  • Smicˇiklas I, Smiljanic´ S, Peric´-Grujic´ A, Šljivic-Ivanovic´ M, Antonovic D (2013) The influence of citrate anion on Ni(II) removal by raw red mud from aluminum industry. Chem Eng J 214:327–335

    Article  CAS  Google Scholar 

  • Sun BB, Liu J, Zhang YQ, Leungb KMY, Zeng EY (2021) Leaching of polybrominated diphenyl ethers from microplastics in fish oil: kinetics and bioaccumulation. Journal of Hazardous Materials 406:124726

    Article  CAS  Google Scholar 

  • Uzinger N, Anton AD, Otvos K, Tamas P, Anton A (2015) Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary. Environ Sci Pollut Res 22:9849–9857

    Article  CAS  Google Scholar 

  • Vigneshwaran S, Uthayakumar M, Arumugaprabu U (2020) Potential use of industrial waste-red mud in developing hybrid composites: a waste management approach. Journal of Cleaner Production 276:124278

    Article  CAS  Google Scholar 

  • Wang CQ, Zhang X, Sun RR, Cao YJ (2020) Neutralazation of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. Journal of Cleaner Production 271:122525

    Article  CAS  Google Scholar 

  • Wang XK, Zhang N, Zhang YH, Liu JG, Wang CS, Chu PK (2020) Composite plates utilizing dealkalized red mud, acid leaching slag and dealkalized red mud-fly ash: preparation and performance comparison. Construction and Building Materials 261:120495

    Article  CAS  Google Scholar 

  • Wang YX, Zhang TA, Lv GZ, Guo FF, Zhang WG, Zhao YH (2018) Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. J Clean Prod 188:456–465

    Article  CAS  Google Scholar 

  • Wang YX, Zhang TA, Lv GZ, Liu Y, Zhang WG, Zhao QY (2021) Overview of process control of novel calcification-carbonation process for bauxite residue treatment. Hydrometallurgy 199:105536

    Article  CAS  Google Scholar 

  • Wu WY, Chen Z, Huang Y, Li JW, Chen DY, Chen N, Su MH (2021) Red mud for the efficient adsorption of U(VI) from aqueous solution: influence of calcination on performance and mechanism. Journal of Hazardous Materials 409:124925

    Article  CAS  Google Scholar 

  • Xie LQ, Zhang TA (2018) Experimental study on calcification process of diaspore Bayer red mud. J Northeastern Univ Nat Sci 39:1614–1618

    Google Scholar 

  • Xie LQ, Zhang TA, Lv GZ, Zhu XF (2018) Direct calcification-carbonation method for processing of Bayer process red mud. Russian Journal of Non-Ferrous Metals 59:142–147

    Article  Google Scholar 

  • Xu YP, Chen CY, Lan YP, Wang LZ, Li JQ (2020) Desilication and recycling of alkali-silicate solution seeded with red mud for low-grade bauxite utilization. J Market Res 9:7418–7426

    CAS  Google Scholar 

  • Yang TX, Wang YF, Sheng LX, He CG, Sun W, He Q (2020) Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manage 255:109866

    Article  CAS  Google Scholar 

  • Yin Y, Xu GY, Xu YX, Guo MY, Xiao YH, Ma T, Liu CQ (2022) Adsorption of inorganic and organic phosphorus onto polypyrrole modified red mud: evidence from batch and column experiments. Chemosphere 286:131862

    Article  CAS  Google Scholar 

  • Zhao H, Li W, Niu ZP, Zhu XB, Xing BL (2020) Study on synthesis of PAFS based on red mud and its application in waste treatment. Mater Rep 34:21038–21044

    Google Scholar 

  • Zhang G, Sun G, Liu JY, Evrendilek F, Buyukada M, Xie WM (2020) Thermal behaviors of fluorine during (co-)incinerations of spent potlining and red mud: transformation, retention, leaching and thermodynamic modeling analyses. Chemosphere 249:126204

    Article  CAS  Google Scholar 

  • Zhang J, Li SC, Li ZF, Liu C, Gao YF, Qi YH (2020) Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation. Construct Build Mater 260:119704

    Article  CAS  Google Scholar 

  • Zhang JZ, Li PZ, Wang K, Ma CY, Liang M, Jiang HG, Yao K, Su CH, Yao ZY (2021) Adhesive behavior and pavement performance of asphalt mixtures incorporating red mud as a filler substitute. Construct Build Mater 298:123855

    Article  Google Scholar 

  • Zhang W, Liu XM, Wang YG, Li ZP, Li Y, Ren YY (2021) Binary reaction behaviors of red mud based cementitious material: hydration characteristics and Na+ utilization. J Hazard Mater 410:124592

    Article  CAS  Google Scholar 

  • Zhang XK, Zhou KG, Wu YH, Lei QY, Peng CH, Chen W (2020) Separation and recovery of iron and scandium from acid leaching solution of red mud using D201 resin. J Rare Earths 38:1322–1329

    Article  CAS  Google Scholar 

  • Zhang YW, Qian WM, Zhou PX, Liu Y, Lei XL, Li B, Ning P (2021) Research on red mud-limestone modified desulfurization mechanism and engineering application. Sep Purif Technol 272:118867

    Article  CAS  Google Scholar 

  • Zhang Z (2007) Study on decreasing content of alkali in red mud by chlorination magnesium. Chem Eng 144:60–61

    Google Scholar 

  • Zhou JF, Zhao JH, Yang F, Wang TL, Du F, Qin YH, Ma JY, Wu ZK, Wang CW (2020) Leaching kinetics of potassium and aluminum from phosphorus-potassium associated ore in HCl-CaF2 system. Sep Purif Technol 253:117528

    Article  CAS  Google Scholar 

  • Zhou KG, Teng CY, Zhang XK, Peng CH, Chen W (2018) Enhanced selective leaching of scandium from red mud. Hydrometallurgy 182:57–63

    Article  CAS  Google Scholar 

  • Zhu XB, Li W, Guan XM (2015) An active dealkalization of red mud with roasting and water leaching. J Hazard Mater 286:85–91

    Article  CAS  Google Scholar 

  • Zhu XB, Li W, Tang S, Zeng MJ, Bai PY, Chen LJ (2017) Selective recovery of vanadium and scandium by ion exchange with D210 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere 175:365–372

    Article  CAS  Google Scholar 

  • Zhu XB, Li W, Zhao H, Zhang CX (2018) Selective dealkalization of red mud using calcium oxide with pressure leaching. JOM 70:2800–2806

    Article  CAS  Google Scholar 

  • Zhu XB, Niu ZP, Li W, Zhao H, Tang QJ (2020) A novel process for recovery of aluminum, iron, vanadium, scandium, titanium and silicon from red mud. J Environ Chem Eng 8:103528

    Article  CAS  Google Scholar 

Download references

Funding

The research is financially supported by the National Natural Science Foundation of China (51904097 and 51804103), the training program for young backbone teachers in Colleges and universities of Henan Province (2019GGJS056), Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control (HB202106), Scientific and Technological Project of Henan Province (202102310548), Program for Innovative Research Team in the University of Henan Province (21IRTSTHN006).

Author information

Authors and Affiliations

Authors

Contributions

Wang Li: methodology, software, writing; Tao Wang: data curation, writing—original draft preparation; Xiaobo Zhu: investigation, writing—reviewing and editing.

Corresponding author

Correspondence to Xiaobo Zhu.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, T. & Zhu, X. Clean dealkalization technology from aluminum industry hazardous tailings—red mud by displacement with Mg-based agent. Environ Sci Pollut Res 29, 55957–55970 (2022). https://doi.org/10.1007/s11356-022-19754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19754-2

Keywords

Navigation