Skip to main content

The relationship between multiple perfluoroalkyl substances and cardiorespiratory fitness in male adolescents

Abstract

Exposure to perfluoroalkyl substances (PFASs) is associated with a number of adverse health outcomes. However, the relationship between mixed and individual PFAS exposure and cardiorespiratory fitness (CRF) in adolescents remains unclear. We used cross-sectional data from 491 teenagers (aged 13–19 years) from the 2003–2004 National Health and Nutrition Examination Survey (NHANES) and examined the association between mixed PFAS exposure and CRF via weighted quantile sum (WQS) regression. Maximal oxygen consumption (VO2max) was used to evaluate CRF. Multivariate linear regression was performed to investigate the relationship between each PFAS and VO2max as well as the relationship between PFAS exposure and the inflammation parameters and blood lipid content. Mediation analyses were performed to investigate possible explanations of the risk of low CRF due to PFAS exposure. The results showed that for males, mixed PFAS exposure was negatively related to VO2max (beta =  − 0.80, 95% CI: − 1.53 to − 0.10, P = 0.028) and that of the PFASs, perfluorononanoic acid (PFNA) had the greatest influence on VO2max. In the individual PFAS analysis, PFNA was negatively related to VO2max in male adolescents (beta =  − 1.49, 95% CI: − 2.65 to − 0.32, P = 0.013). Additionally, significant relationships among serum PFNA levels and total cholesterol and the white blood cell (WBC) count were found. Mediation analyses revealed that WBC count accounted for 24.18% of the variation between PFNA level and CRF. The present results provide epidemiological evidence that exposure to PFASs, mainly PFNA, is negatively associated with CRF, possibly via alterations in WBC count.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets used and analyzed during the current study are available from https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm.

References

  • Abe T, Takahashi M, Kano M, Amaike Y, Ishii C, Maeda K, Kudoh Y, Morishita T, Hosaka T, Sasaki T, Kodama S, Matsuzawa A, Kojima H, Yoshinari K (2017) Activation of nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch Toxicol 91:2365–2374

    CAS  Google Scholar 

  • Arboleda-Serna VH, Feito Y, Patino-Villada FA, Vargas-Romero AV, Arango-Velez EF (2019) Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: a randomized controlled trial. Biomedica 39:524–536

    Google Scholar 

  • Arbuckle TE, Kubwabo C, Walker M, Davis K, Lalonde K, Kosarac I, Wen SW, Arnold DL (2013) Umbilical cord blood levels of perfluoroalkyl acids and polybrominated flame retardants. Int J Hyg Environ Health 216:184–194

    CAS  Google Scholar 

  • Arena R, Myers J, Williams MA, Gulati M, Kligfield P, Balady GJ, Collins E, Fletcher G, American Heart Association Committee on Exercise R, Prevention of the Council on Clinical C, American Heart Association Council on Cardiovascular N (2007) Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 116:329–343

    Google Scholar 

  • Bjork JA, Wallace KB (2009) Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicol Sci 111:89–99

    CAS  Google Scholar 

  • Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262:2395–2401

    CAS  Google Scholar 

  • Borg D, Bogdanska J, Sundstrom M, Nobel S, Hakansson H, Bergman A, DePierre JW, Halldin K, Bergstrom U (2010) Tissue distribution of (35)S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reprod Toxicol 30:558–565

    CAS  Google Scholar 

  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541

    CAS  Google Scholar 

  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Tully JS, Needham LL (2007) Serum concentrations of 11 polyfluoroalkyl compounds in the u.s. population: data from the national health and nutrition examination survey (NHANES). Environ Sci Technol 41:2237–2242

    CAS  Google Scholar 

  • Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007) Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 115:1596–1602

    CAS  Google Scholar 

  • Carnethon MR, Gulati M, Greenland P (2005) Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. JAMA 294:2981–2988

    CAS  Google Scholar 

  • Chao TP, Sperandio EF, Ostolin T, Almeida VR, Romiti M, Gagliardi ART, Arantes RL, Dourado VZ (2018) Use of cardiopulmonary exercise testing to assess early ventilatory changes related to occupational particulate matter. Braz J Med Biol Res 51:e6486

    CAS  Google Scholar 

  • Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, Li YY, Xu SQ (2012) Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol 33:538–545

    CAS  Google Scholar 

  • Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R (2019) Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia. Sci Total Environ 683:29–36

    CAS  Google Scholar 

  • Costa G, Sartori S, Consonni D (2009) Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med 51:364–372

    CAS  Google Scholar 

  • Czarnota J, Gennings C, Colt JS, De Roos AJ, Cerhan JR, Severson RK, Hartge P, Ward MH, Wheeler DC (2015) Analysis of environmental chemical mixtures and non-Hodgkin lymphoma risk in the NCI-SEER NHL Study. Environ Health Perspect 123:965–970

    CAS  Google Scholar 

  • Czarnota J, Gennings C, Wheeler DC (2015) Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Inform 14:159–171

    Google Scholar 

  • Das KP, Grey BE, Rosen MB, Wood CR, Tatum-Gibbs KR, Zehr RD, Strynar MJ, Lindstrom AB, Lau C (2015) Developmental toxicity of perfluorononanoic acid in mice. Reprod Toxicol 51:133–144

    CAS  Google Scholar 

  • Dimech CJ, Anderson JAE, Lockrow AW, Spreng RN, Turner GR (2019) Sex differences in the relationship between cardiorespiratory fitness and brain function in older adulthood. J Appl Physiol (1985) 126:1032–1041

    Google Scholar 

  • Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK (2016) Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care 39:1745–1751

    Google Scholar 

  • Duan W, Xu C, Liu Q, Xu J, Weng Z, Zhang X, Basnet TB, Dahal M, Gu A (2020) Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: a population-based cohort study. Environ Pollut 263:114630

    CAS  Google Scholar 

  • Emmett EA, Zhang H, Shofer FS, Freeman D, Rodway NV, Desai C, Shaw LM (2006) Community exposure to perfluorooctanoate: relationships between serum levels and certain health parameters. J Occup Environ Med 48:771–779

    CAS  Google Scholar 

  • Fan Y, Li X, Xu Q, Zhang Y, Yang X, Han X, Du G, Xia Y, Wang X, Lu C (2020) Serum albumin mediates the effect of multiple per- and polyfluoroalkyl substances on serum lipid levels. Environ Pollut 266:115138

    CAS  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  Google Scholar 

  • Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczeny O, Koletzko B, Volkel W (2010) Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol 44:7123–7129

    CAS  Google Scholar 

  • Gardener H, Sun Q, Grandjean P (2021) PFAS concentration during pregnancy in relation to cardiometabolic health and birth outcomes. Environ Res 192:110287

    CAS  Google Scholar 

  • Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CN, Lauer MS, Marwick TH, Pandey DK, Wicklund RH, Thisted RA (2005) The prognostic value of a nomogram for exercise capacity in women. N Engl J Med 353:468–475

    CAS  Google Scholar 

  • Haufe S, Engeli S, Budziarek P, Utz W, Schulz-Menger J, Hermsdorf M, Wiesner S, Otto C, Haas V, de Greiff A, Luft FC, Boschmann M, Jordan J (2010) Cardiorespiratory fitness and insulin sensitivity in overweight or obese subjects may be linked through intrahepatic lipid content. Diabetes 59:1640–1647

    CAS  Google Scholar 

  • He X, Liu Y, Xu B, Gu L, Tang W (2018) PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003–2012. Sci Total Environ 625:566–574

    CAS  Google Scholar 

  • Hsi WL, Lai JS (1996) Exercise test in acute myocardial infarction. Am J Phys Med Rehabil 75:263–269

    CAS  Google Scholar 

  • Ichihara Y, Ohno J, Suzuki M, Anno T, Sugino M, Nagata K (2002) Higher C-reactive protein concentration and white blood cell count in subjects with more coronary risk factors and/or lower physical fitness among apparently healthy Japanese. Circ J 66:677–684

    Google Scholar 

  • Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE (1990) Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc 22:863–870

    CAS  Google Scholar 

  • Jain RB, Ducatman A (2018) Associations between lipid/lipoprotein levels and perfluoroalkyl substances among US children aged 6–11 years. Environ Pollut 243:1–8

    CAS  Google Scholar 

  • Jiang Q, Lust RM, Strynar MJ, Dagnino S, DeWitt JC (2012) Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology 293:97–106

    CAS  Google Scholar 

  • Jiang Q, Lust RM, DeWitt JC (2013) Perfluorooctanoic acid induced-developmental cardiotoxicity: are peroxisome proliferator activated receptor alpha (PPARalpha) and bone morphorgenic protein 2 (BMP2) pathways involved? J Toxicol Environ Health A 76:635–650

    CAS  Google Scholar 

  • Johansen JL, Esbaugh AJ (2017) Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish. Aquat Toxicol 187:82–89

    CAS  Google Scholar 

  • Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszon-Moran D, Dohrmann SM, Curtin LR (2013) National health and nutrition examination survey: analytic guidelines, 1999–2010. Vital Health Stat 2:1–24

    Google Scholar 

  • Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM (2011) Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999–2008. Environ Sci Technol 45:8037–8045

    CAS  Google Scholar 

  • Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384

    CAS  Google Scholar 

  • Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, Hangartner T, Kannan K (2018) Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8–12 year old children: a pilot study. Environ Res 160:314–321

    CAS  Google Scholar 

  • Kim DJ, Noh JH, Lee BW, Choi YH, Jung JH, Min YK, Lee MS, Lee MK, Kim KW (2005) A white blood cell count in the normal concentration range is independently related to cardiorespiratory fitness in apparently healthy Korean men. Metabolism 54:1448–1452

    CAS  Google Scholar 

  • Kim SJ, Heo SH, Lee DS, Hwang IG, Lee YB, Cho HY (2016) Gender differences in pharmacokinetics and tissue distribution of 3 perfluoroalkyl and polyfluoroalkyl substances in rats. Food Chem Toxicol 97:243–255

    CAS  Google Scholar 

  • Knudsen AS, Long M, Pedersen HS, Bonefeld-Jorgensen EC (2018) Persistent organic pollutants and haematological markers in Greenlandic pregnant women: the ACCEPT sub-study. Int J Circumpolar Health 77:1456303

    Google Scholar 

  • Kokkinos P, Myers J (2010) Exercise and physical activity: clinical outcomes and applications. Circulation 122:1637–1648

    Google Scholar 

  • Kung YP, Lin CC, Chen MH, Tsai MS, Hsieh WS, Chen PC (2021) Intrauterine exposure to per- and polyfluoroalkyl substances may harm childrens lung function development. Environ Res 192:110178

    CAS  Google Scholar 

  • Lavie CJ, Church TS, Milani RV, Earnest CP (2011) Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J Cardiopulm Rehabil Prev 31:137–145

    Google Scholar 

  • Lind PM, Salihovic S, van Bavel B, Lind L (2017) Circulating levels of perfluoroalkyl substances (PFASs) and carotid artery atherosclerosis. Environ Res 152:157–164

    CAS  Google Scholar 

  • Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45:7954–7961

    CAS  Google Scholar 

  • Long M, Ghisari M, Bonefeld-Jorgensen EC (2013) Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 20:8045–8056

    CAS  Google Scholar 

  • Lopez-Espinosa MJ, Carrizosa C, Luster MI, Margolick JB, Costa O, Leonardi GS, Fletcher T (2021) Perfluoroalkyl substances and immune cell counts in adults from the Mid-Ohio Valley (USA). Environ Int 156:106599

    CAS  Google Scholar 

  • Lou I, Wambaugh JF, Lau C, Hanson RG, Lindstrom AB, Strynar MJ, Zehr RD, Setzer RW, Barton HA (2009) Modeling single and repeated dose pharmacokinetics of PFOA in mice. Toxicol Sci 107:331–341

    CAS  Google Scholar 

  • Lu KD, Bar-Yoseph R, Radom-Aizik S, Cooper DM (2019) A new approach to estimate aerobic fitness using the NHANES dataset. Scand J Med Sci Sports 29:1392–1401

    Google Scholar 

  • Mao Z, Xia W, Wang J, Chen T, Zeng Q, Xu B, Li W, Chen X, Xu S (2013) Perfluorooctane sulfonate induces apoptosis in lung cancer A549 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. J Appl Toxicol 33:1268–1276

    CAS  Google Scholar 

  • McManus A, Leung M (2000) Maximising the clinical use of exercise gaseous exchange testing in children with repaired cyanotic congenital heart defects: the development of an appropriate test strategy. Sports Med 29:229–244

    CAS  Google Scholar 

  • Mobacke I, Lind L, Dunder L, Salihovic S, Lind PM (2018) Circulating levels of perfluoroalkyl substances and left ventricular geometry of the heart in the elderly. Environ Int 115:295–300

    CAS  Google Scholar 

  • Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR (2012) Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000–2010. Environ Sci Technol 46:6330–6338

    CAS  Google Scholar 

  • Oulhote Y, Shamim Z, Kielsen K, Weihe P, Grandjean P, Ryder LP, Heilmann C (2017) Childrens white blood cell counts in relation to developmental exposures to methylmercury and persistent organic pollutants. Reprod Toxicol 68:207–214

    CAS  Google Scholar 

  • Pandey A, Park BD, Ayers C, Das SR, Lakoski S, Matulevicius S, de Lemos JA, Berry JD (2016) Determinants of racial/ethnic differences in cardiorespiratory fitness (from the Dallas Heart Study). Am J Cardiol 118:499–503

    Google Scholar 

  • Perusse L, Gagnon J, Province MA, Rao DC, Wilmore JH, Leon AS, Bouchard C, Skinner JS (2001) Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc 33:597–604

    CAS  Google Scholar 

  • Qin XD et al (2017) Association of perfluoroalkyl substances exposure with impaired lung function in children. Environ Res 155:15–21

    CAS  Google Scholar 

  • Reagen WK, Ellefson ME, Kannan K, Giesy JP (2008) Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood. Anal Chim Acta 628:214–221

    CAS  Google Scholar 

  • Ren H, Vallanat B, Nelson DM, Yeung LWY, Guruge KS, Lam PKS, Lehman-McKeeman LD, Corton JC (2009) Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol 27:266–277

    CAS  Google Scholar 

  • Ross R et al (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134:e653–e699

    Google Scholar 

  • Rossi Neto JM, Tebexreni AS, Alves ANF, Smanio PEP, de Abreu FB, Thomazi MC, Nishio PA, Cuninghant IA (2019) Cardiorespiratory fitness data from 18,189 participants who underwent treadmill cardiopulmonary exercise testing in a Brazilian population. PLoS One 14:e0209897

    CAS  Google Scholar 

  • Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, Nikoobakht N, Wong CS, Loewen M, Becker AB, Halayko AJ (2014) Chronic exposure to perfluorinated compounds: impact on airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol 307:L765–L774

    CAS  Google Scholar 

  • Sawada SS, Lee IM, Naito H, Kakigi R, Goto S, Kanazawa M, Okamoto T, Tsukamoto K, Muto T, Tanaka H, Blair SN (2014) Cardiorespiratory fitness, body mass index, and cancer mortality: a cohort study of Japanese men. BMC Public Health 14:1012

    Google Scholar 

  • Schmidt MD, Magnussen CG, Rees E, Dwyer T, Venn AJ (2016) Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int J Obes (lond) 40:1134–1140

    CAS  Google Scholar 

  • Schumacher AN, Shackelford DYK, Brown JM, Hayward R (2019) Validation of the 6-min walk test for predicting peak V O2 in cancer survivors. Med Sci Sports Exerc 51:271–277

    Google Scholar 

  • Steinvil A, Shmueli H, Ben-Assa E, Leshem-Rubinow E, Shapira I, Berliner S, Kordova-Biezuner L, Rogowski O (2013) Environmental exposure to combustion-derived air pollution is associated with reduced functional capacity in apparently healthy individuals. Clin Res Cardiol 102:583–591

    CAS  Google Scholar 

  • Stubleski J, Salihovic S, Lind L, Lind PM, van Bavel B, Karrman A (2016) Changes in serum levels of perfluoroalkyl substances during a 10-year follow-up period in a large population-based cohort. Environ Int 95:86–92

    CAS  Google Scholar 

  • Sui X, LaMonte MJ, Blair SN (2007) Cardiorespiratory fitness as a predictor of nonfatal cardiovascular events in asymptomatic women and men. Am J Epidemiol 165:1413–1423

    Google Scholar 

  • Sui X, Howard VJ, McDonnell MN, Ernstsen L, Flaherty ML, Hooker SP, Lavie CJ (2018) Racial differences in the association between nonexercise estimated cardiorespiratory fitness and incident stroke. Mayo Clin Proc 93:884–894

    Google Scholar 

  • Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156

    CAS  Google Scholar 

  • Tatum-Gibbs K, Wambaugh JF, Das KP, Zehr RD, Strynar MJ, Lindstrom AB, Delinsky A, Lau C (2011) Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology 281:48–55

    CAS  Google Scholar 

  • Tenorio TR, Farah BQ, Ritti-Dias RM, Botero JP, Brito DC, Moura PM, Prado WL (2014) Relation between leukocyte count, adiposity, and cardiorespiratory fitness in pubertal adolescents. Einstein (sao Paulo) 12:420–424

    Google Scholar 

  • Wilms B, Keppler R, Ernst B, Schmid SM, Thurnheer M, Schultes B (2020) Cardiorespiratory fitness is associated with glycated hemoglobin and triglyceride levels in severely obese men: a retrospective clinical data analysis. Exp Clin Endocrinol Diabetes 128:15–19

    CAS  Google Scholar 

  • Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD (2008) Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci 106:162–171

    CAS  Google Scholar 

  • Wolf CJ, Schmid JE, Lau C, Abbott BD (2012) Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARalpha) by perfluoroalkyl acids (PFAAs): further investigation of C4–C12 compounds. Reprod Toxicol 33:546–551

    CAS  Google Scholar 

  • Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engstrom K (2020) Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. Environ Int 136:105446

    CAS  Google Scholar 

  • Xu C, Liu Q, Liang J, Weng Z, Xu J, Jiang Z, Gu A (2021) Urinary biomarkers of polycyclic aromatic hydrocarbons and their associations with liver function in adolescents. Environ Pollut 278:116842

    CAS  Google Scholar 

  • Ye L, Zhao B, Yuan K, Chu Y, Li C, Zhao C, Lian QQ, Ge RS (2012) Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol Lett 209:270–276

    CAS  Google Scholar 

  • Zhang Y, Jiang W, Fang S, Zhu L, Deng J (2014) Perfluoroalkyl acids and the isomers of perfluorooctanesulfonate and perfluorooctanoate in the sera of 50 new couples in Tianjin, China. Environ Int 68:185–191

    CAS  Google Scholar 

  • Zhang Y, Zhang Y, Klaassen CD, Cheng X (2018) Alteration of bile acid and cholesterol biosynthesis and transport by perfluorononanoic acid (PFNA) in mice. Toxicol Sci 162:225–233

    CAS  Google Scholar 

Download references

Funding

This work was supported by funding from the Medical Science and Technology Development Foundation, Jiangsu Provincial Commission of Health and Family Planning (grant no. ZDRCA2016073), and the Key Project of the Jiangsu Commission of Health (ZDA2020004).

Author information

Authors and Affiliations

Authors

Contributions

K.H.W.: conceptualization and methodology; G.W.Z. and Q.Z.: data curation and project administration; G.W.Z. and Q.Z.: writing—original draft preparation and editing; K.H.W.: supervision and investigation; X.W.W.: validation; G.W.Z. and K.H.W.: writing—review and editing.

Corresponding author

Correspondence to Kai-Hong Wu.

Ethics declarations

Ethics approval and consent to participate

Survey participants signed a consent form and consented to having specimens of their blood stored for future research. The CDC/NCHS Ethics Review Board approved the NHANES and gave approval for public dissemination.

Consent for publication

Not applicable. There are no individual-level data in our publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Zhang, Q., Wang, X. et al. The relationship between multiple perfluoroalkyl substances and cardiorespiratory fitness in male adolescents. Environ Sci Pollut Res 29, 53433–53443 (2022). https://doi.org/10.1007/s11356-022-19685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19685-y

Keywords

  • Perfluoroalkyl substances
  • Cardiorespiratory fitness
  • Mixed exposure
  • Weighted quantile sum
  • NHANES