Skip to main content

Advertisement

Log in

Anthropogenic climate change drives melting of glaciers in the Himalaya

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Himalayan glaciers provide water to a large population in south Asia for a variety of purposes and ecosystem services. As a result, regional monitoring of glacier melting and identification of the drivers are important for understanding and predicting future cryospheric melting trends. Using multi-date satellite images from 2000 to 2020, we investigated the shrinkage, snout retreat, thickness changes, mass loss and velocity changes of 77 glaciers in the Drass basin, western Himalaya, India. During this period, the total glacier cover has shrunk by 5.31 ± 0.33 km2. The snout retreat ranged from 30 to 430 m (mean 155 ± 9.58 m). Debris cover had a significant impact on glacier melting, with clean glaciers losing ~ 5% more than debris-covered glaciers (~ 2%). The average thickness change and mass loss of glacier have been − 1.27 ± 0.37 and − 1.08 ± 0.31 m w.e.a−1, respectively. Because of the continuous melting and the consequent mass loss, average glacier velocity has reduced from 21.35 ± 3.3 m a−1 in 2000 to 16.68 ± 1.9 m a−1 by 2020. During the observation period, the concentration of greenhouse gases (GHGs), black carbon (BC) and other pollutants from vehicular traffic near the glaciers increased significantly. Increasing temperatures, caused by a significant increase in GHGs, black carbon and other pollutants in the atmosphere, are driving glacier melting in the study area. If the current trend continues in the future, the Himalayan glaciers may disappear entirely, having a significant impact on regional water supplies, hydrological processes, ecosystem services and transboundary water sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  • Abdullah T, Romshoo SA, Rashid I (2020) The satellite observed glacier mass changes over the Upper Indus Basin during 2000–2012. Sci Rep 10:1–9

    Article  Google Scholar 

  • Al-Bayati RM, Al-Salihi AM (2019) Monitoring carbon dioxide from (AIRS) over Iraq during 2003–2016. AIP Conf Proc 2144(1):030007. AIP Publishing LLC

  • Ali I, Shukla A, Romshoo SA (2017) Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology 284:115–129

    Article  Google Scholar 

  • Ali S, Khan G, Hassan W, Qureshi JA, Bano I (2021) Assessment of glacier status and its controlling parameters from 1990 to 2018 of Hunza Basin, Western Karakorum. Environ Sci Pollut Res 28(44):63178–63190

    Article  Google Scholar 

  • Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–386

    Article  CAS  Google Scholar 

  • Baidya S, Borken-Kleefeld J (2009) Atmospheric emissions from road transportation in India. Energy Policy 37:3812–3822

    Article  Google Scholar 

  • Bajracharya SR, Maharjan SB, Shrestha F (2014) The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann Glaciol 55:159–166

    Article  Google Scholar 

  • Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press

    Book  Google Scholar 

  • Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J Glaciol 57:543–556

    Article  Google Scholar 

  • Bhat MA, Romshoo SA, Beig G (2017) Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: seasonality, sources, meteorology and radiative forcing. Atmos Environ 165:336–348

    Article  CAS  Google Scholar 

  • Bhattacharya A, Bolch T, Mukherjee K, Pieczonka T, Kropáček JAN, Buchroithner MF (2016) Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. J Glaciol 62:1115–1133

    Article  Google Scholar 

  • Bhushan S, Syed TH, Kulkarni AV, Gantayat P, Agarwal V (2017) Quantifying changes in the Gangotri Glacier of Central Himalaya: evidence for increasing mass loss and decreasing velocity. IEEE J Sel Top Appl Earth Observ Remote Sens 10:5295–5306

    Article  Google Scholar 

  • Bhushan S, Syed TH, Arendt AA, Kulkarni AV, Sinha D (2018) Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • Bolch T, Buchroithner MF, Peters J, Baessler M, Bajracharya S (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat Hazard 8:1329–1340

    Article  Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens Environ 1141:127–137

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314

    Article  CAS  Google Scholar 

  • Chahine MT, Pagano TS, Aumann HH, Atlas R, Barnet C, Blaisdell J et al (2006) AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteor Soc 87:911–926

    Article  Google Scholar 

  • Chudley TR, Miles ES, Willis IC (2017) Glacier characteristics and retreat between 1991 and 2014 in the Ladakh Range, Jammu and Kashmir. Remote Sensing Letters 8:518–527

    Article  Google Scholar 

  • Cogley JG (2011) Present and future states of Himalaya and Karakoram glaciers. Ann Glaciol 52:69–73

    Article  Google Scholar 

  • Das S, Sharma MC (2019) Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya, India. J Glaciol 65:13–28

    Article  Google Scholar 

  • Debnath M, Sharma MC, Syiemlieh HJ (2019) Glacier dynamics in changme khangpu basin, Sikkim Himalaya, India, between 1975 and 2016. Geosciences 9:259

    Article  Google Scholar 

  • Dehecq A, Gourmelen N, Gardner AS, Brun F, Goldberg D, Nienow PW et al (2019) Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat Geosci 12:22–27

    Article  CAS  Google Scholar 

  • Ding C, Feng G, Li Z, Shan X, Du Y, Wang H (2016) Spatio-temporal error sources analysis and accuracy improvement in Landsat 8 image ground displacement measurements. Remote Sensing 8:937

    Article  Google Scholar 

  • Diolaiuti GA, Bocchiola D, Vagliasindi M, D’agata C, Smiraglia C (2012) The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations with climate evolution. Prog Phys Geogr 36:764–785

    Article  Google Scholar 

  • Dixit A, Sahany S, Kulkarni AV (2021) Glacial changes over the Himalayan Beas basin under global warming. J Environ Manag 295:113101

    Article  Google Scholar 

  • Dobhal DP, Mehta M, Srivastava D (2013) Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. J Glaciol 59:961–971

    Article  Google Scholar 

  • Farinotti D, Immerzeel WW, de Kok RJ, Quincey DJ, Dehecq A (2020) Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat Geosci 13:8–16

    Article  CAS  Google Scholar 

  • Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci 108:14011–14014

    Article  CAS  Google Scholar 

  • Gao J, Liu Y (2001) Applications of remote sensing, GIS and GPS in glaciology: a review. Prog Phys Geogr 25:520–540

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286

    Article  Google Scholar 

  • Garg PK, Shukla A, Tiwari RK, Jasrotia AS (2017) Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: a multiparametric approach. Geomorphology 284:99–114

    Article  Google Scholar 

  • Granshaw FD, Fountain AG (2006) Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. J Glaciol 52:251–256

    Article  CAS  Google Scholar 

  • Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57:267–269

    Article  Google Scholar 

  • Hall DK, Bayr KJ, Schöner W, Chien BRA, JY, (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens Environ 86:566–577

    Article  Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7:1–18

    Article  Google Scholar 

  • Heid T, Kääb A (2012) Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens Environ 118:339–355

    Article  Google Scholar 

  • Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Global Planet Change 36:295–306

    Article  Google Scholar 

  • Huss M, Fischer M (2016) Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front Earth Sci 4:34

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  CAS  Google Scholar 

  • Jiskoot H, Curran CJ, Tessler DL, Shenton LR (2009) Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, length–slope and area–aspect relations. Ann Glaciol 50:133–143

    Article  Google Scholar 

  • Juyal N (2014) Ladakh: the high-altitude Indian cold desert. In: Landscapes and Landforms of India. Springer, Dordrecht

  • Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air-and space borne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogramm Remote Sens 57:39–52

    Article  Google Scholar 

  • Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I et al (2005) Remote sensing of glacier-and permafrost-related hazards in high mountains: an overview. Nat Hazard 5:527–554

    Article  Google Scholar 

  • Kavitha M, Nair PR, Girach IA, Aneesh S, Sijikumar S, Renju R (2018) Diurnal and seasonal variations in surface methane at a tropical coastal station: role of mesoscale meteorology. Sci Total Environ 631:1472–1485

    Article  Google Scholar 

  • Kendall K (1975) Thin-film peeling-the elastic term. J Phys D Appl Phys 8:1449

    Article  Google Scholar 

  • Khan G, Ali S, Xiangke X, Qureshi JA, Ali M, Karim I (2021) Expansion of Shishper Glacier lake and recent glacier lake outburst flood (GLOF), Gilgit-Baltistan, Pakistan. Environ Sci Pollut Res 28(16):20290–20298

    Article  Google Scholar 

  • Koul MN, Bahuguna IM, Rajawat AS, Ali S, Koul S (2016) Glacier area change over past 50 years to stable phase in Drass valley, Ladakh Himalaya (India). Am J Clim Chang 5:88

    Article  Google Scholar 

  • Kramer RJ, He H, Soden BJ, Oreopoulos L, Myhre G, Forster PM, Smith CJ (2021) Observational evidence of increasing global radiative forcing. Geophys Res Lett 48(7):e2020GL091585

    Article  Google Scholar 

  • Krotkov NA, McLinden CA, Li C, Lamsal LN, Celarier EA, Marchenko SV et al (2016) Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos Chem Phys 16:4605–4629

    Article  CAS  Google Scholar 

  • Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Chaudhary H (2019) Hydro-geochemical characteristics of glacial meltwater from Naradu Glacier catchment, Western Himalaya. Environ Earth Sci 78:1–12

    Article  Google Scholar 

  • Kumar D, Singh AK, Taloor AK, Singh DS (2021) Recessional pattern of Thelu and Swetvarn glaciers between 1968 and 2019, Bhagirathi basin, Garhwal Himalaya, India. Quatern Int 575:227–235

    Article  Google Scholar 

  • Kuze A, Suto H, Nakajima M, Hamazaki T (2009) Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt 48:6716–6733

    Article  CAS  Google Scholar 

  • Lamsal LN, Krotkov NA, Celarier EA, Swartz WH, Pickering KE, Bucsela EJ et al (2014) Evaluation of OMI operational standard NO 2 column retrievals using in situ and surface-based NO2 observations. Atmos Chem Phys 14:11587–11609

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G et al (2007) Observations: changes in snow, ice and frozen ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Leprince S, Barbot S, Ayoub F, Avouac JP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 45:1529–1558

    Article  Google Scholar 

  • Li Y, Chen J, Kang S, Li C, Qu B, Tripathee L, ... Qin X (2016) Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau. The Cryosphere Discussions 1–14

  • Luo J, Li W, Liao XY, He ZW (2004) CO2 emission from soils of the deglaciered region on Hailuogou Glacier in the past 100 years. J Mt Res 22:421–427

    Google Scholar 

  • Mandal A, Ramanathan AL, Angchuk T, Soheb M, Singh VB (2016) Unsteady state of glaciers (Chhota Shigri and Hamtah) and climate in Lahaul and Spiti region, western Himalayas: a review of recent mass loss. Environ Earth Sci 75:1–12

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econometr Soc 13(3):245–259

  • Murtaza KO, Romshoo SA (2014) Determining the suitability and accuracy of various statistical algorithms for satellite data classification. Int J Geomat Geosci 4:585

    Google Scholar 

  • Murtaza KO, Romshoo SA (2017) Recent glacier changes in the Kashmir alpine Himalayas, India. Geocarto Int 32:188–205

    Google Scholar 

  • Murtaza KO, Dar RA, Paul OJ, Bhat NA, Romshoo SA (2021) Glacial geomorphology and recent glacial recession of the Harmukh Range, NW Himalaya. Quatern Int 575:236–248

    Article  Google Scholar 

  • Nainwal HC, Banerjee A, Shankar R, Semwal P, Sharma T (2016) Shrinkage of Satopanth and Bhagirath Kharak glaciers, India, from 1936 to 2013. Ann Glaciol 57:131–139

    Article  Google Scholar 

  • Nair VS, Babu SS, Moorthy KK, Sharma AK, Marinoni A, Ajai (2013) Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B: Chem Phys Meteorol 65:19738

    Article  Google Scholar 

  • Nüsser M, Schmidt S (2021) Glacier changes on the Nanga Parbat 1856–2020: a multi-source retrospective analysis. Sci Total Environ 785:147321

    Article  Google Scholar 

  • Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5:271–290

    Article  Google Scholar 

  • Oerlemans J, Fortuin JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258:115–117

    Article  CAS  Google Scholar 

  • Pall IA, Meraj G, Romshoo SA (2019) Applying integrated remote sensing and field-based approach to map glacial landform features of the Machoi Glacier valley, NW Himalaya. SN Appl Sci 1(5):1–11

    Article  Google Scholar 

  • Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34:5584–5597

    Article  Google Scholar 

  • Patel LK, Sharma P, Fathima TN, Thamban M (2018) Geospatial observations of topographical control over the glacier retreat, Miyar basin, Western Himalaya, India. Environ Earth Sci 77:1–12

    Article  CAS  Google Scholar 

  • Paul F (2015) Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram. Cryosphere 9:2201–2214

    Article  Google Scholar 

  • Paul F, Bolch T, Kääb A, Nagler T, Nuth C, Scharrer K, ... Van Niel T (2015) The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment 162:408–426

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2002) The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann Glaciol 34:355–361

    Article  Google Scholar 

  • Paul F, Bolch T, Briggs K, Kääb A, McMillan M, McNabb R (2017) Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens Environ 203:256–275

    Article  Google Scholar 

  • Prakash J, Habib G (2018) A technology-based mass emission factors of gases and aerosol precursor and spatial distribution of emissions from on-road transport sector in India. Atmos Environ 180:192–205

    Article  CAS  Google Scholar 

  • Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India. Ann Glaciol 56:9–16

    Article  Google Scholar 

  • Racoviteanu AE, Arnaud Y, Williams MW, Ordonez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54:499–510

    Article  Google Scholar 

  • Ramachandra TV, Aithal BH, Sreejith K (2015) GHG footprint of major cities in India. Renew Sustain Energy Rev 44:473–495

    Article  Google Scholar 

  • Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos Environ 43:37–50

    Article  CAS  Google Scholar 

  • Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578

    Article  CAS  Google Scholar 

  • Rashid I, Majeed U, Najar NA, Bhat IA (2021) Retreat of Machoi Glacier, Kashmir Himalaya between 1972 and 2019 using remote sensing methods and field observations. Sci Total Environ 785:147376

    Article  CAS  Google Scholar 

  • Richardson S (1999) Joint EMEP/CORINAIR Atmospheric emission inventory guidebook. 2nd ed.. CEC: N. p.. Web

  • Romshoo SA, Fayaz M, Meraj G, Bahuguna IM (2020a) Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018. Environ Monit Assess 192:1–17

    Article  Google Scholar 

  • Romshoo SA, Bashir J, Rashid I (2020b) Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Clim Change 162(3):1473–1491

    Article  Google Scholar 

  • Sahu R, Gupta RD (2019) Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto Int 36(14):1591–1611

  • Scherler D, Strecker MR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J Glaciol 58:569–580

    Article  Google Scholar 

  • Scherler D, Leprince S, Strecker MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens Environ 112:3806–3819

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159

    Article  CAS  Google Scholar 

  • Schmidt S, Nüsser M (2012) Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, northwest India. Arct Antarct Alp Res 44:107–121

    Article  Google Scholar 

  • Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Change 11:65–77

    Article  Google Scholar 

  • Shukla A, Garg PK (2020) Spatio-temporal trends in the surface ice velocities of the central Himalayan glaciers, India. Glob Planet Change 190:103187

    Article  Google Scholar 

  • Shukla A, Garg S, Mehta M, Kumar V, Shukla UK (2020) Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability. Earth Syst Sci Data 12:1245–1265

    Article  Google Scholar 

  • Singh DK, Thakur PK, Naithani BP, Dhote PR (2021) Spatio-temporal analysis of glacier surface velocity in Dhauliganga basin using geo-spatial techniques. Environ Earth Sci 80:1–16

    Article  Google Scholar 

  • Snehmani BA, Pandit A, Ganju A (2014) Demarcation of potential avalanche sites using remote sensing and ground observations: a case study of Gangotri glacier. Geocarto Int 29:520–535

    Article  Google Scholar 

  • Storey JC, Choate MJ (2004) Landsat-5 bumper-mode geometric correction. IEEE Trans Geosci Remote Sens 42:2695–2703

    Article  Google Scholar 

  • Susskind J, Barnet CD, Blaisdell JM (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans Geosci Remote Sens 41:390–409

    Article  Google Scholar 

  • Thakur RC, Arun BS, Gogoi MM, Thamban M, Thayyen RJ, Redkar BL, Babu SS (2021) Multi-layer distribution of black carbon and inorganic ions in the snow-packs of western Himalayas and snow albedo forcing. Atmos Environ 261:118564

    Article  CAS  Google Scholar 

  • Thompson I, Shrestha M, Chhetri N, Agusdinata DB (2020) An institutional analysis of glacial floods and disaster risk management in the Nepal Himalaya. Int J Disaster Risk Reduct 47:101567

    Article  Google Scholar 

  • Tiwari RK, Gupta RP, Arora MK (2014) Estimation of surface ice velocity of Chhota-Shigri glacier using sub-pixel ASTER image correlation. Curr Sci 106(6):853–859

    Google Scholar 

  • Venkatesh TN, Kulkarni AV, Srinivasan J (2012) Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. Cryosphere 6:301–311

    Article  Google Scholar 

  • Vijay S, Braun M (2016) Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing 8:1038

    Article  Google Scholar 

  • Wu K, Liu S, Xu J, Zhu Y, Liu Q, Jiang Z, Wei J (2020) Spatiotemporal variability of surface velocities of monsoon temperate glaciers in the Kangri Karpo Mountains, southeastern Tibetan Plateau. J Glaciol 67(261):186–191

    Article  Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N et al (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106:22114–22118

    Article  CAS  Google Scholar 

  • Zeb B, Alam K, Nasir J, Mansha M, Ahmad I, Bibi S et al (2020) Black carbon aerosol characteristics and radiative forcing over the high altitude glacier region of Himalaya-Karakorum-Hindukush. Atmos Environ 238:117711

    Article  CAS  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762

    Article  Google Scholar 

  • Zhang G, Li Z, Wang W, Wang W (2014) Rapid decrease of observed mass balance in the Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Quatern Int 349:135–141

    Article  Google Scholar 

  • Zhao X, Wang X, Wei J, Jiang Z, Zhang Y, Liu S (2020) Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015. Sci Total Environ 745:140995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance received from the Department under the project to accomplish the research is thankfully acknowledged.

Funding

The work was conducted as part of the research grant received from the Department of Science and Technology (DST), Government of India, under the research project titled “Centre of Excellence for Glacial Studies in Western Himalaya”.

Author information

Authors and Affiliations

Authors

Contributions

Shakil Ahmad Romshoo: conceptualization, methodology, investigation, supervision, manuscript writing with inputs from KOM; Khalid Omar Murtaza: data curation and analysis, methodology, investigation, manuscript preparation, writing; Waheed Shah: data curation and analysis; Tawseef Ramzan: data analysis and investigation; Ummer Ameen: data analysis and editing and Mustafa Hameed Bhat: data analysis and editing.

Corresponding author

Correspondence to Shakil Ahmad Romshoo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romshoo, S.A., Murtaza, K.O., Shah, W. et al. Anthropogenic climate change drives melting of glaciers in the Himalaya. Environ Sci Pollut Res 29, 52732–52751 (2022). https://doi.org/10.1007/s11356-022-19524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19524-0

Keywords

Navigation