Skip to main content
Log in

Mechanisms of chromium(VI) removal from solution by zeolite and vermiculite modified with iron(II)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mechanisms of Cr(VI) reduction by Fe(II) modified zeolite (clinoptilolite/mordenite) and vermiculite were evaluated. Adsorbents were treated with Fe(SO4)·7H2O to saturate their exchange sites with Fe(II). However, this treatment decreased their CEC and pHPZC, probably due to the dealumination process. Vermiculite (V-Fe) adsorbed more Fe(II) (21.8 mg g−1) than zeolite (Z-Fe) (15.1 mg g−1). Z-Fe and V-Fe were used to remove Cr(VI) from solution in a batch test to evaluate the effect of contact time and the initial concentration of Cr(VI). The Cr(VI) was 100% reduced to Cr(III) by Z-Fe and V-Fe in solution at 18 mg L−1 Cr(VI) after 1 min. Considering that 3 mol of Fe(II) are required to reduce 1 mol of Cr(VI) (3Fe+2 + Cr+6 → 3Fe+3 + Cr+3), the iron content released from Z-Fe and V-Fe was sufficient to reduce 100% of the Cr(VI) in solutions up to 46.8 mg L−1 Cr(VI) and about 90% (V-Fe) and 95% (Z-Fe) at 95.3 mg L−1 Cr(VI). The Fe(II), Cr(III), Cr(VI), and K+ contents of the adsorbents and solutions after the batch tests indicated that the K+ ions from the \({\mathrm{K}}_{2}{\mathrm{Cr}}_{2}{\mathrm{O}}_{7}\) solution were the main cation adsorbed by Z-Fe, while vermiculite did not absorb any of these cations. The H+ of the acidic solution (pH around 5) may have been adsorbed by V-Fe. The release of Fe(II) from Z-Fe and V-Fe involved cation exchange between K+ and H+ ions from solution, respectively. The reduction of Cr(VI) by Fe(II) resulted in the precipitation of Cr(III) and Fe(III) and a decrease in the pH of the solution to < 5. As acidity limits the precipitation of Cr(III) ions, they remained in solution and were not adsorbed by either adsorbent (since they prefer to adsorb K+ and H+). To avoid oxidation, Cr(III) can be removed by precipitation or the adsorption by untreated minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments on our manuscript. We also thank Celta Brasil LTDA for zeolite samples and Brasil Minérios S.A for vermiculite samples.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MIGR contributed to the investigation and the first draft of the manuscript; GB and SSVC also contributed to the investigation; FRDdA and SACF contributed to the formal analysis (XRD), writing — review and editing, supervision; MCS contributed to the conceptualization, writing — original draft, supervision, and project administration.

Corresponding author

Correspondence to Mirian Chieko Shinzato.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, M.I.G., Boga, G.A., Cruz, S.S.V. et al. Mechanisms of chromium(VI) removal from solution by zeolite and vermiculite modified with iron(II). Environ Sci Pollut Res 29, 49724–49738 (2022). https://doi.org/10.1007/s11356-022-19366-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19366-w

Keywords

Navigation