Skip to main content

Advertisement

Log in

Essential oil of Piper purusanum C.DC (Piperaceae) and its main sesquiterpenes: biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The mosquito vectors of the genera Aedes and Anopheles present resistance to several commercial insecticides, which are also toxic to non-predator targets. On the other hand, essential oils are a promising source of insecticides. Thus, in this work, the essential oil from the leaves of Piper purusanum was characterized by gas chromatography–based approaches and evaluated as biodefensive against malaria and dengue vectors. The main compounds of P. purusanum essential oil were β-caryophyllene (57.05%), α-humulene (14.50%), and germacrene D (8.20%). The essential oil inhibited egg hatching (7.6 ± 1.5 to 95.6 ± 4.5%), caused larval death (LC50 from 49.84 to 51.60 ppm), and inhibited the action of acetylcholinesterase (IC50 of 2.29 µg/mL), which can be related to the mechanisms of action. On the other hand, the biological activities of β-caryophyllene, α-humulene, and germacrene D were higher than that of essential oil. In addition, these sesquiterpenes and essential oil did not show a lethal effect on Toxorhynchites splendens, Anisops bouvieri, Gambusia affinis, and Diplonychus indicus (LC50 from 2098.80 to 7707.13 ppm), although D. indicus is more sensitive (SI/PSF from 48.56 to 252.02 ppm) to essential oil, representing a natural alternative against these relevant vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abed RA, Cavasin GM, Silva HHG, Geris R, Silva IG (2007) Morphohistological alterations in larvae of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) caused by larvicidal oil-resin activity of the medicinal plant Copaifera reticulata Ducke (Leguminosae). Rev Patol Trop 36:75–86. https://doi.org/10.5216/rpt.v36i1.1819

    Article  Google Scholar 

  • Adams RP (2017) Identification of essential oil components by gas chromatography/mass spectrometry, 4th Edt. Allured Publishing Corporation, Carol Stream, p 809p

    Google Scholar 

  • Aguirre-Obando OA, Pietrobon AJ, Bona ACD, Navarro-Silva MA (2016) Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in Aedes aegypti populations from Jacarezinho (Brazil) after a dengue outbreak. Rev Bras Entomol 60:94–100. https://doi.org/10.1016/j.rbe.2015.11.009

    Article  Google Scholar 

  • Al-Mehmadi RM, Al-Khalaf AA (2010) Larvicidal and histological effects of Melia azedarach extract on Culex quinquefasciatus Say larvae (Diptera: Culicidae). J King Saud Univ Sci 22:77–85. https://doi.org/10.1016/j.jksus.2010.02.004

    Article  Google Scholar 

  • AlSalhi M, Elumalai K, Devanesan S, Govindarajan M, Krishnappa K, Maggi F (2020) The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind Crops Prod 158:11312. https://doi.org/10.1016/j.indcrop.2020.113012

  • Andrade EHA, Alves CN, Guimarães EF, Carreira LMM, Maia JGS (2011) Variability in essential oil composition of Piper dilatatum L.C. Rich Biochem System Ecol 39:669–675. https://doi.org/10.1016/j.bse.2011.05.021

    Article  CAS  Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion - a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163. https://doi.org/10.1002/ps.2233

    Article  CAS  Google Scholar 

  • Baranitharan M, Dhanasekaran S, Kovendan K, Murugan K, Gokulakrishnan J, Benelli G (2017) Coleus aromaticus leaf extract fractions: a source of novel ovicides, larvicides and repellents against Anopheles, Aedes and Culex mosquito vectors? Process Saf Environ Prot 106:23–33. https://doi.org/10.1016/j.psep.2016.12.003

    Article  CAS  Google Scholar 

  • Barreto CF, Cavasin GM, Garcia da Silva HH, Da Silva IG (2007) Study of morphohistological alterations in larvae of Aedes aegypti (Diptera: Culicidae) submitted to the crude ethanol extract Desapindus saponaria lin (Sapindaceae). Rev Patol Trop 35:37–57. https://doi.org/10.5216/rpt.v35i1.1891

    Article  Google Scholar 

  • Benelli G, Rajeswary M, Govindarajan M (2016) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res 2018(25):10218–10227

    Google Scholar 

  • Braga IA, Valle D (2007) Aedes aegypti: insecticides, mechanisms of action and resistance. Epidemiol Serv Saud 16:279–293. https://doi.org/10.5123/S1679-49742007000400006

    Article  Google Scholar 

  • Brazilian Ministry of Health (2021) Epidemiological bulletin. boletim_especial_malaria_1dez20_final.pdf (www.gov.br). Accessed 12 Aug 2021

  • Bullangpoti V, Mujchariyakul W, Laksanavilat N (2018) Acute toxicity of essential oil compounds (thymol and 1,8-cineole) to insectivorous guppy, Poecilia reticulata Peters, 1859. Agric Nat Resour 5:190–194. https://doi.org/10.1016/j.anres.2018.06.011

    Article  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400. https://doi.org/10.1021/jf0497152

    Article  CAS  Google Scholar 

  • Consoli RAGB, Oliveira RLD (1994) Main mosquitoes of sanitary importance in Brazil, Primeira. Fiocruz, Rio de Janeiro

    Google Scholar 

  • da Silva MFR, Bezerra-Silva PC, de Lira CS, de Lima Albuquerque BN, Agra Neto AC, Pontual EV, Maciel JR, Paiva PMG, Navarro DM, do A.F., (2016) Composition and biological activities of the essential oil of Piper corcovadensis (Miq). C.DC (Piperaceae). Exp Parasitol 165:64–70. https://doi.org/10.1016/j.exppara.2016.03.017

    Article  CAS  Google Scholar 

  • de Oliveira AC, Sá ISC, Mesquita RS, Pereira BL, Pocrifka LA, de Souza TP, Rodriguez Amado JR, Azevedo SG, Sanches EA, Nunomura SM, Roque RA, Tadei WP, Nunomura RCS (2020) Nanoemulsion loaded with volatile oil from Piper alatipetiolatum as an alternative agent in the control of Aedes aegypti. Rev Bras Farmacogn 30:667–677. https://doi.org/10.1007/s43450-020-00092-8

    Article  CAS  Google Scholar 

  • Demirci B, Yusufoglu HS, Tabanca N, Temel HE, Bernier UR, Agramonte NM, Alqasoumi SI, Al-Rehaily AJ, Başer KHC, Demirci F (2017) Rhanterium epapposum Oliv. essential oil: chemical composition and antimicrobial, insect-repellent and anticholinesterase activities. Saudi Pharm J 25:703–708. https://doi.org/10.1016/j.jsps.2016.10.009

    Article  Google Scholar 

  • Deo PG, Hasan SB, Majumdar SK (1988) Toxicity and suitability of some insecticides for household use. Int Pest Control 30:118–129

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colourimetric determination of acetylcholinesterase activity. Biochemi Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Faran ME, Linthicum KJ (1981) A handbook of the Amazon species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosquito System 13:1–81

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Forgiarini A, Esquena J, González C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076–2083. https://doi.org/10.1021/la001362n

    Article  CAS  Google Scholar 

  • Girard EA, Koehler HS, Netto SP (2007) “Craveiro” (Pimenta pseudocaryophyllus (Gomes) Landrum). Essential oil, volume, biomass and yield. Rev Acad 5:147–165

    Google Scholar 

  • Gorham JR, Stojanovich CJ, Scott HG (1973) Illustrated key o the Anopheles mosquitoes of Western South America. Mosq Syst 5:99–155

  • Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4:106–111. https://doi.org/10.1016/S1995-7645(11)60047-3

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016a) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf 133:395–402. https://doi.org/10.1016/j.ecoenv.2016.07.035

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016b) α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115:2771–2778. https://doi.org/10.1007/s00436-016-5025-2

    Article  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1:43–48. https://doi.org/10.1016/S2221-1691(11)60066-X

    Article  CAS  Google Scholar 

  • Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M, Maldonado ME, Bruni R (2009) Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ Toxicol Pharmacol 27:39–48. https://doi.org/10.1016/j.etap.2008.08.002

    Article  CAS  Google Scholar 

  • Guimarães, EF; Queiroz GA; Medeiros EVSS (2020) Piper in Flora do Brazil. Botanical Garden of Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB86652. Accessed 9 Jan 2021

  • Hamada N, Nessimian JL, Querino, RB (2014) Aquatic insects in the Brazilian Amazon: taxonomy, biology and ecology. Publisher INPA, p 724

  • Houghton P, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199. https://doi.org/10.1039/b508966m

    Article  CAS  Google Scholar 

  • Huang Y, Lin M, Jia M, Hu J, Zhu L (2019) Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest Manag Sci 76:534–542. https://doi.org/10.1002/ps.554

    Article  CAS  Google Scholar 

  • Janaki S, Zandi-Sohani N, Ramezani L, Szumny A (2018) Chemical composition and insecticidal efficacy of Cyperus rotundus essential oil against three stored product pests. Int Biodeter Biodegradation 133:93–98. https://doi.org/10.1016/j.ibiod.2018.06.008

    Article  CAS  Google Scholar 

  • Kala S, Naik SN, Patanjali PK, Sogan N (2019) Neem oil water-dispersible tablet as effective larvicide, ovicide and oviposition deterrent against Anopheles culicifacies. South African J Bot 123:387–392. https://doi.org/10.1016/j.sajb.2019.03.033

    Article  CAS  Google Scholar 

  • Kanis LA, Rabelo BD, Moterle D, Custódio KM, de Oliveira JG, de Lemos AB, da Silva OS, Zepon KM, Magnago RF, Prophiro JS (2018) Piper ovatum (Piperaceae) extract/starch-cellulose films to control Aedes aegypti (Diptera: Culicidae) larvae. Ind Crops Prod 122:148–155. https://doi.org/10.1016/j.indcrop.2018.05.055

    Article  CAS  Google Scholar 

  • Karak S, Acharya J, Begum S, Mazumdar I, Kundu R, De B (2018) Essential oil of Piper betle L. leaves: chemical composition, anti-acetylcholinesterase, anti-β-glucuronidase and cytotoxic properties. J Appl Res Medic Aromat Plant 10:85–92. https://doi.org/10.1016/j.jarmap.2018.06.006

    Article  Google Scholar 

  • Kelly J, Silva R, Pinto LC, Burbano RMR, Montenegro RC, Guimarães EF, Helena E, Andrade A, Guilherme J, Maia S (2014) Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind Crops Prod 58:55–60. https://doi.org/10.1016/j.indcrop.2014.04.006

    Article  CAS  Google Scholar 

  • Lee S, Peterson CJ, Coats JR (2002) Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res 39:77–85. https://doi.org/10.1016/S0022-474X(02)00020-6

    Article  Google Scholar 

  • Marques AM, Kaplan MAC (2015) Active metabolites of the genus Piper against Aedes aegypti: natural alternative sources for dengue vector control. Univ Sci 20:61–82. https://doi.org/10.11144/Javeriana.SC20-1.amgp

    Article  Google Scholar 

  • Marques AM, Velozo LS, Carvalho MA, Serdeiro MT, Honório NA, Kaplan MAC, Maleck M (2017) Larvicidal activity of Ottonia anisum metabolites against Aedes aegypti: a potential natural alternative source for mosquito vector control in Brazil. J Vector Borne Dis 54:61–68

    CAS  Google Scholar 

  • Matasyoh JC, Wathuta EM, Kariuki ST, Chepkorir R (2011) Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector. Anopheles Gambiae J Asia Pac Entomol 14:26–28. https://doi.org/10.1016/j.aspen.2010.11.005

    Article  Google Scholar 

  • Mehlhorn H, Abdel-ghaffar F, Semmler M (2011) Ovicidal effects of a neem seed extract preparation on eggs of body and head lice. Parasitol Res 1299–1302. doi:https://doi.org/10.1007/s00436-011-2374-8

  • Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, Furtado AF, Magalhaes T, Macoris MLG, Andrighetti MTM, Ayres CFJ (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113:180–189. https://doi.org/10.1016/j.actatropica.2009.10.015

    Article  CAS  Google Scholar 

  • Ministry of Health Brazil (2019) Ministry of Health warns of 149% increase in dengue cases in the country.https://www.gov.br/saude/pt-br/assuntos/noticias/2019/fevereiro/ministerio-da-saude-alerta-para-aumento-de-149-dos-casos-de-dengue-no-pais. Accessed 24 Nov 2020

  • Ministry of Health of Brazil (2021) Malária. Malária — Português Brasil (www.gov.br) Accessed 12 Aug 2021

  • Nararak J, Sathantriphop S, Kongmee M, Mahiou-Leddet V, Ollivier E, Manguin S, Chareonviriyaphap T (2019) Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Trop 197:105030. https://doi.org/10.1016/j.actatropica.2019.05.021

    Article  CAS  Google Scholar 

  • National Institute of Standards and Technology (NIST) (2011) Standard reference database. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry. Accessed 24 Nov 2020

  • Nogueira AJA, Domingues I, Agra AR, Monaghan K, Amadeu MVM (2010) Critical review: Cholinesterase and glutathione-S-transferase activities in freshwater. Environ Toxicol Chem 9:5–18. https://doi.org/10.1002/etc.23

    Article  CAS  Google Scholar 

  • Qin W, Huang S, Li C, Chen S, Peng Z (2010) Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). Pestic Biochem Physiol 96:132–139. https://doi.org/10.1016/j.pestbp.2009.10.006

    Article  CAS  Google Scholar 

  • Pan American Health Organization (PAHO) (2020a) WHO calls for reinvigorated action to fight malaria. OMS pede ação revigorada para combater a malária - OPAS/OMS | Organização Pan-Americana da Saúde (paho.org) Accessed August 12, 2021

  • Pan American Health Organization (PAHO) (2020b) Dengue cases in the Americas reach 1.6 million during the pandemic. https://www.paho.org/en/news/23-6-2020-dengue-cases-americas-top-16-million-highlighting-need-mosquito-control-during-covid. Accessed 12 Aug 2021

  • Pavela R (2015) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 114:3835–3853. https://doi.org/10.1007/s00436-015-4614-9

    Article  Google Scholar 

  • Rajkumar S, Jebanesan A, Nagarajan R (2011) Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pac J Trop Med 4:948–951. https://doi.org/10.1016/S1995-7645(11)60224-1

    Article  CAS  Google Scholar 

  • Raphael V, Borges DA, Ribeiro AF, Anselmo CDS, Cabral LM, Sousa VPD (2013) Development of a high-performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design. J Chromatogra b 940:35–41. https://doi.org/10.1016/j.jchromb.2013.09.024

    Article  CAS  Google Scholar 

  • Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97:2481–2484. https://doi.org/10.1016/j.biortech.2005.10.003

    Article  CAS  Google Scholar 

  • Reegan AD, Gandhi MR, Paulraj MG, Balakrishna K, Ignacimuthu S (2014) Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop 139:67–76. https://doi.org/10.1016/j.actatropica.2014.07.002

    Article  CAS  Google Scholar 

  • Shoukat RF, Shakeel M, Rizvi SAH, Zafar J, Zhang Y, Freed S, Xu X, Jin F (2020) Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11:1–13. https://doi.org/10.3390/insects11040246

    Article  Google Scholar 

  • Silva AP, Alves WS, Martins A, Tadei WP, Santos JMM (2014) Adaptation of a simplified bioassay to assess susceptibility status in larvae of Anopheles darlingi and Anopheles marajoara to pyrethroid deltamethrin. Brazilian Entomol Soc 9:1–8. https://doi.org/10.14295/BA.v9.139

    Article  Google Scholar 

  • Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118. https://doi.org/10.1590/s0074-0276200400010002

    Article  CAS  Google Scholar 

  • Soonwera M, Phasomkusolsi S (2017) Adulticidal, larvicidal, pupicidal and oviposition deterrent activities of essential oil from Zanthoxylum limonella Alston (Rutaceae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Asian Pac J Trop Biomed 7:967–978. https://doi.org/10.1016/j.apjtb.2017.09.019

    Article  Google Scholar 

  • Sperotto ARM, Moura DJ, Péres VF, Damasceno FC, Caramão EB, Henriques S, D.S., Wang, Y., Bilgrami, A.L., Gaugler, R., (2013) Activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop 128:103–109. https://doi.org/10.1016/j.actatropica.2013.06.025

    Article  CAS  Google Scholar 

  • Tabari MA, Khodashenas A, Jafari M, Petrelli R, Cappellacci L, Nabissi M, Maggi F, Pavela R, Youssefi MR, (2020) Acaricidal properties of hemp (Cannabis sativa L.) essential oil against Dermanyssus gallinae and Hyalomma dromedarii. Ind. Crops Prod 147, 112238. doi:https://doi.org/10.1016/j.indcrop.2020.112238

  • Van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogra a 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  • Vaz C, Torres RB, Bernacci LC, Guimarães EF, Haber LL, Facanali R, Vieira MAR, Quecini V, Ortiz M, Marques M (2016) The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind Crops Prod 94:528–539. https://doi.org/10.1016/j.indcrop.2016.09.028

    Article  CAS  Google Scholar 

  • Ventorim F, Paula RD, Caldeira I, Alvarenga A, Kelly S, Bertolucci V, Alves A, Alvarenga D, Eduardo J, Pereira B (2016) Essential oil of monkey-pepper (Piper aduncum L.) cultivated under different light environments. Ind Crops Prod 85:251–257. https://doi.org/10.1016/j.indcrop.2016.03.016

    Article  CAS  Google Scholar 

  • Villamizar LH, Cardoso M. das G, de Andrade J, Teixeira ML, Soares MJ (2017) Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4° C. Mem. Inst. Oswaldo Cruz. 112:131–139. doi:https://doi.org/10.1590/0074-02760160361

  • Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepak M (2007) Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol 109:359–363. https://doi.org/10.1016/j.jep.2006.06.014

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1975) Manual on practical entomology in malaria. Part II. Methods and techniques. Geneva, World Health Organization (WHO Offset Publication 13)

  • World Health Organization (WHO) (2020) Word malaria report 2020: 20 years of global process & challenges. Geneva: World Health Organization; 2020. Licence: CC BY-NC-AS 3.0 IGO

  • World Health Organization (WHO) (2021) Dengue e dengue grave. Dengue e dengue grave (who.int)

  • World Health Organization (WHO) (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization Commun. Dis. Control. Prev. Erad. Who Pestic.Eval. Scheme 1–41. Ref: WHO/CDS/WHOPES/GCDPP/2005.11

Download references

Acknowledgements

In memoriam to Doctor Wanderli Pedro Tadei. We also thank the Graduate Program in Pharmaceutical Innovation, Sample Opening and Chemical Testing Laboratory, Malaria and Dengue Laboratory, Amazon Active Principles Laboratory, Dr Rosemary Costa Pinto Health Surveillance Foundation, Analytical Center, Multidisciplinary Support Center, National Council for Scientific and Technological Development, Science and Technology, Amazonas State Research Support Foundation, and Graduate Program in Pharmaceutical Innovation for all the support.

Funding

This project was supported by the National Council for Scientific and Technological Development, Science and Technology—Amazonia (077/2013, process no. 408172/2013–4); the Ministry of Science, Technology and Innovation/National Council of Sciences and Technological Development (28/2018, process no. 432533/2018–4); the Ministry of Science, Technology and Innovation/Science and Technology—Agribusiness—Amazonia (process no. 403496/2013–6); and the Amazonas State Research Foundation (018/2015, No. 062.00549/2019).

Author information

Authors and Affiliations

Authors

Contributions

André C. de Oliveira, Felipe M. A. da Silva, Sergio M. Nunomura, Rosemary A. Roque, Wanderli P. Tadei, and Rita C. S. Nunomura: Conceptualization, methodology, investigation, formal analysis, data curation, writing—original draft, writing—review and editing and supervision. Carlos A. P. Lima and Rejane C. Simões: Conceptualization.

Corresponding author

Correspondence to André C. de Oliveira.

Ethics declarations

Ethical approval

The collection of plant and mosquitoes were authorized by Sistema de Autorização e Informação em Biodiversidade (SISBIO) (No. 78388–1, No. 74151). The blood meal of female mosquitoes performed in hamsters was authorized by the Ethics Committee on the Use of Animals (No. 058/2018, SEI 01280.001882/2018–21). The study was registered in the Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (SisGen) (No. ADC693C).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by Giovanni Benelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wanderli P. Tadei passed away during the preparation of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.C., Simões, R.C., Lima, C.A.P. et al. Essential oil of Piper purusanum C.DC (Piperaceae) and its main sesquiterpenes: biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. Environ Sci Pollut Res 29, 47242–47253 (2022). https://doi.org/10.1007/s11356-022-19196-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19196-w

Keywords

Navigation