Skip to main content

Advertisement

Log in

Anaerobic treatment of ultrasound pretreated palm oil mill effluent (POME): microbial diversity and enhancement of biogas production

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects — a review. Environ Rev 18(1):255–278

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF (2016) Standard methods for the examination of water and wastewater. American Public Health Association.

  • Badiei M, Jahim JM, Anuar N, Abdullah SRS (2011) Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. Int J Hydrog Energy 36(10):5912–5919

    Article  CAS  Google Scholar 

  • Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microbiol Ecology 44(22):99–106

    Google Scholar 

  • Bello ARC, Angelis DF (2005) Ultrasound efficiency in relation to sodium hypochlorite and filtration adsorption in microbial elimination in a water treatment plant. Braz Arch Biol Technol 48:739–745

    Article  CAS  Google Scholar 

  • Budiman PM, Wu TY (2016) Ultrasonication pre-treatment of combined effluents from palm oil, pulp and paper mills for improving photofermentative biohydrogen production. Energy Convers Manag 119:142–150. https://doi.org/10.1016/j.enconman.2016.03.060

    Article  CAS  Google Scholar 

  • Cesaro A, Velten S, Belgiorno V, Kuchta K (2014) Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production. J Clean Prod 74:119–124. https://doi.org/10.1016/j.jclepro.2014.03.030

    Article  CAS  Google Scholar 

  • Chen S, Zhang J, Wang X (2015) Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag Res 33:1–8

    Article  Google Scholar 

  • Cho SK, Kim DH, Quince C, Im WT, Oh SE, Shin SG (2016) Low-strength ultrasonication positively affects methanogenic granules toward higher AD performance: Implications from microbial community shift. Ultrason Sonochem 32(Supplement C):198–203. https://doi.org/10.1016/j.ultsonch.2016.03.010

    Article  CAS  Google Scholar 

  • De la Rubia MA, Fernández-Cegrí V, Raposo F, Borja R (2011) Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem Eng J 58–59:162–167. https://doi.org/10.1016/j.bej.2011.09.010

    Article  CAS  Google Scholar 

  • Demirel B, Scherer P (2008) The role of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  • Fang C, O-Thong S, Boe K, Angelidaki I (2011) Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME). J Hazard 189(1–2):229–234

    Article  CAS  Google Scholar 

  • Ferry J (1997) Enzymology of the fermentation of acetate to methane by methanosarcina thermophila. BioFactors 6(1):25–35

    Article  CAS  Google Scholar 

  • Fitamo T, Treu L, Boldrin A, Sartori C, Angelidaki I, Scheutz C (2017) Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Res 118:261–271. https://doi.org/10.1016/j.watres.2017.04.012

    Article  CAS  Google Scholar 

  • Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour Technol 102(20):9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. A John Wiley & Sons Inc, Canada

    Book  Google Scholar 

  • Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166(3):1066–1082. https://doi.org/10.1016/j.cej.2010.11.069

    Article  CAS  Google Scholar 

  • Guo J, Peng Y, Ni BJ, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories 14(33):1–11. https://doi.org/10.1186/s12934-015-0218-4

    Article  CAS  Google Scholar 

  • Helenas Perin JK, Biesdorf Borth PL, Torrecilhas AR, Santana da Cunha L, Kuroda EK, Fernandes F (2020) Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J Clean Prod 272:123130. https://doi.org/10.1016/j.jclepro.2020.123130

    Article  CAS  Google Scholar 

  • Isa MH, Anderson GK (2005) Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochem 40(6):2079–2089. https://doi.org/10.1016/j.procbio.2004.07.025

    Article  CAS  Google Scholar 

  • Isa MH, Farooqi IH, Siddiqi RH (1993) Methanogenic activity test for study of anaerobic processes. Indian J Environ Health 35(1):1–8

    CAS  Google Scholar 

  • Isa MH, Wong LP, Bashir MJK, Shafiq N, Kutty SRM, Farooqi IH, Lee HC (2020) Improved anaerobic digestion of palm oil mill effluent and biogas production by ultrasonication pretreatment. Sci Total Environ 722:137833. https://doi.org/10.1016/j.scitotenv.2020.137833

    Article  CAS  Google Scholar 

  • Jarrell KFK, Martin L (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34(5):557–576

    Article  CAS  Google Scholar 

  • Khadaroo SNBA, Poh PE, Gouwanda D, Grassia P (2019) Applicability of various pretreatment techniques to enhance the anaerobic digestion of palm oil mill effluent (POME): a review. J Environ Chem 7(5):103310. https://doi.org/10.1016/j.jece.2019.103310

    Article  CAS  Google Scholar 

  • Kim DJ, Lee J (2012) Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time. Bioprocess Biosyst Eng 35(1–2):289–296. https://doi.org/10.1007/s00449-011-0588-x

    Article  CAS  Google Scholar 

  • Li W, Fang A, Liu B, Xie G, Lou Y, Xing D (2019) Effect of different co-treatments of waste activated sludge on biogas production and shaping microbial community in subsequent anaerobic digestion. Chem Eng J 37:122098. https://doi.org/10.1016/j.cej.2019.122098

    Article  CAS  Google Scholar 

  • Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu, BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express, 5(37). https://doi.org/10.1186/s13568-015-0117-4

  • Liu Y, Li X, Kang X, Yuan Y, Jiao M, Zhan J, Du M (2015) Effect of extracellular polymeric substances disintegration by ultrasonic pretreatment on waste activated sludge acidification. Int Biodeterior Biodegradation 102:131–136. https://doi.org/10.1016/j.ibiod.2015.02.020

    Article  CAS  Google Scholar 

  • Liu Y, Whitman W (2008). Increadible anaerobes: from physiology to genomics to fuels (Vol. 1125). HighWire Press, blackwell Publishing, New York

  • Lizama AC, Figueiras CC, Herrera RR, Pedreguera AZ, Ruiz Espinoza JE (2017) Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. Int Biodeterior Biodegradation 123:1–9. https://doi.org/10.1016/j.ibiod.2017.05.020

    Article  CAS  Google Scholar 

  • Lu D, Xiao K, Chen Y, Soh YNA, Zhou Y (2018) Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: from macro to micro. Water Res 142:138–146. https://doi.org/10.1016/j.watres.2018.05.044

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16. https://doi.org/10.1016/S0960-8524(00)00023-7

    Article  CAS  Google Scholar 

  • McMahon KD, Zheng D, Stams AJ, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87(7):823–834

    Article  CAS  Google Scholar 

  • Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173. https://doi.org/10.1016/j.rser.2014.03.010

    Article  CAS  Google Scholar 

  • Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B (2018) Influence of trace element supplementation on anaerobic digestion of chicken manure: linking process stability to methanogenic population dynamics. J Clean Prod 181:794–800. https://doi.org/10.1016/j.jclepro.2018.01.264

    Article  CAS  Google Scholar 

  • Mosey FE, Fernandes XA (1988) Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugar. In: Pergamon (ed) Water Pollution Research and Control Brighton, pp 187–196 https://doi.org/10.1016/B978-1-4832-8439-2.50022-5

  • Müller V, Blaut M, Gottschalk G (1986) Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth. Appl Environ Microbiol 52(2):269–274

    Article  Google Scholar 

  • Nguyen DD, Yoon YS, Nguyen ND, Bach QV, Bui XT, Chang SW et al (2017) Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment. J Taiwan Inst Chem Eng 71:244–252. https://doi.org/10.1016/j.jtice.2016.12.019

    Article  CAS  Google Scholar 

  • O-Thong S, Suksong W, Promnuan K, Thipmunee M, Mamimin C, Prasertsan P (2016) Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control. Int J Hydrog Energy 41(46):21702–21712. https://doi.org/10.1016/j.ijhydene.2016.07.095

    Article  CAS  Google Scholar 

  • Ohimain EI, Izah SC (2017) A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sust Energ Rev 70:242–253. https://doi.org/10.1016/j.rser.2016.11.221

    Article  CAS  Google Scholar 

  • Oz NA, Uzun AC (2015) Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrason Sonochem 22:565–572. https://doi.org/10.1016/j.ultsonch.2014.04.018

    Article  CAS  Google Scholar 

  • Parthasarathy S, Mohammed RR, Fong CM, Gomes RL, Manickam S (2016) A novel hybrid approach of activated carbon and ultrasound cavitation for the intensification of palm oil mill effluent (POME) polishing. J Clean Prod 112(Part 1):1218–1226. https://doi.org/10.1016/j.jclepro.2015.05.125

    Article  CAS  Google Scholar 

  • Patel BG, Sprott GD, Humphrey RW, Beveridge TJ (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei strains GP1 and JF1. Can J Microbiol 32(8):623–631

    Article  CAS  Google Scholar 

  • Patil MN, Pandit AB (2007) Cavitation - a novel technique for making stable nanosuspensions. Ultrason Sonochem 14:519–530

    Article  CAS  Google Scholar 

  • Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100:1–9

    Article  CAS  Google Scholar 

  • Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J et al (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700. https://doi.org/10.1038/ismej.2009.2

    Article  Google Scholar 

  • Scherer PA, Bochem HP (1983) Ultrastructural investigation of 12 Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike inclusions. Can J Microbiol 29(9):1190–1199

    Article  CAS  Google Scholar 

  • Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:1–21

    Google Scholar 

  • Shah YT, Pandit AB, Moholkar VS (1999) Cavitation reaction engineering. Plenum Publishers, USA

    Book  Google Scholar 

  • Sun H, Yang Z, Zhao Q, Kurbonova M, Zhang R, Liu G, Wang W (2021) Modification and extension of anaerobic digestion model No.1 (ADM1) for syngas biomethanation simulation: from lab-scale to pilot-scale. Chem Eng J 403:126177. https://doi.org/10.1016/j.cej.2020.126177

    Article  CAS  Google Scholar 

  • Tan B, Silva R, Rozycki T, Nesbø B, Foght J (2014) Draft genome sequences of three Smithella spp. obtained from a methanogenic alkane-degrading culture and oil field produced water. Genome Announc 2(5). https://doi.org/10.1128/genomeA.01085-14

  • Traversi D, Villa S, Lorenzi E, Degan R, Gilli G (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manage 111:173–177. https://doi.org/10.1016/j.jenvman.2012.07.021

    Article  CAS  Google Scholar 

  • Wong LP, Isa MH, Bashir MJK (2016) Use of low frequency ultrasound for solids solubilization in palm oil mill effluent. Paper presented at the 3rd International Conference on Civil, Offshore & Environmental Engineering (ICOOEE2016), Kuala Lumpur, Malaysia.

  • Wong LP, Isa MH, Bashir MJK (2018a) Disintegration of palm oil mill effluent organic solids by ultrasonication: optimization by response surface methodology. Process Saf Environ Prot 114:123–132. https://doi.org/10.1016/j.psep.2017.12.012

    Article  CAS  Google Scholar 

  • Wong LP, Isa MH, Bashir MJK (2018b) Low frequency ultrasound treatment of palm oil mill effluent for solubilization of organic matter. Desalination Water Treat 108:164–170. https://doi.org/10.5004/dwt.2018.21978

    Article  CAS  Google Scholar 

  • Xing J, Criddle C, Hickey R (1997) Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Res 31(9):2195–2204. https://doi.org/10.1016/S0043-1354(97)00064-X

    Article  CAS  Google Scholar 

  • Yacob S, Ali Hassan M, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366(1):187–196. https://doi.org/10.1016/j.scitotenv.2005.07.003

    Article  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56(6):1331–1340. https://doi.org/10.1099/ijs.0.64169-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experimental work was mainly conducted at Universiti Teknologi PETRONAS. The authors gratefully acknowledge the facilities support by Universiti Tunku Abdul Rahman and Universiti Teknologi PETRONAS. We acknowledge the Ministry of Higher Education, Malaysia, and Universiti Teknologi PETRONAS for the graduate assistantship given to LPW for her postgraduate studies.

Author information

Authors and Affiliations

Authors

Contributions

MHI initiated the idea and was the leader in this project. LPW performed the experiments and was a major contributor in writing the manuscript. MJKB analyzed data and reviewed the article. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Lai-Peng Wong.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isa, M.H., Bashir, M.J.K. & Wong, LP. Anaerobic treatment of ultrasound pretreated palm oil mill effluent (POME): microbial diversity and enhancement of biogas production. Environ Sci Pollut Res 29, 44779–44793 (2022). https://doi.org/10.1007/s11356-022-19022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19022-3

Keywords

Navigation