Skip to main content
Log in

A new approach to study the degradation of the organic pollutants by A-doped MxOy/B photocatalysts

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work presents a new approach and a comprehensive mechanism to study the kinetics of the photodegradation of the organic pollutants. The vital role of various operational factors on the degradation of the organic pollutants is explained using this method. The proposed approach is based on the simple strategies and a powerful computational method. Two new variables “the effective concentration of photon” (Ieff) and “the effective concentration of the reactive centers” (RC) are defined to better understand the effect of operational parameters on the organic pollutant photodegradation. The optimum conditions of the photocatalytic degradation can be determined with the help of this method. This approach was used to study the kinetics of photodegradation of the organic pollutants on the \(\mathrm{A}-\mathrm{doped }{\mathrm{M}}_{\mathrm{x}}{\mathrm{O}}_{\mathrm{y}}/\mathrm{B}\) photocatalysts. The provided mechanism has been examined with the some experimental data. The high correlations between the experimental data and the fitting results under different conditions prove this mechanism could be reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Al-Ekabi H, Serpone N, Pelizzetti E, Minero C, Fox MA, Draper RB (1989) Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2, 4-dichlorophenol, and 2, 4, 5-trichlorophenol in air-equilibrated aqueous media. Langmuir 5:250–255

    Article  CAS  Google Scholar 

  • Al-Kdasi A, Idris A, Saed K, Guan CT (2004) Treatment of textile wastewater by advanced oxidation processes—a review. Glob Nest Int J 6:222–230

    Google Scholar 

  • Al-Rasheed RA (2005) Water treatment by heterogeneous photocatalysis an overview, 4th SWCC Acquired Experience Symposium held in Jeddah, pp. 1–14

  • Alkaim A, Aljeboree A, Alrazaq N, Baqir S, Hussein F, Lilo A (2014) Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J Chem 26:8445

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Arabameri M, Bashiri H (2021) Introduction of the effective photon concentration variable for studying the mechanism of crystal violet photodegradation. Photochem Photobiol. https://doi.org/10.1111/php.13543

  • Assowe O, Politano O, Vignal V, Arnoux P, Diawara B (2012) A reactive force field molecular dynamics simulation study of corrosion of nickel, Defect and Diffusion Forum. Trans Tech Publ, pp. 139–145

  • Bahnemann D, Henglein A, Lilie J, Spanhel L (1984) Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide. J Phys Chem 88:709–711

    Article  CAS  Google Scholar 

  • Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  • Barka N, Assabbane A, Nounah A, Ichou YA (2008) Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres. J Hazard Mater 152:1054–1059

    Article  CAS  Google Scholar 

  • Barka N, Qourzal S, Assabbane A, Ait-Ichou Y (2010) Kinetic modeling of the photocatalytic degradation of methyl orange by supported TiO2. J Environ Sci Eng 4:1–5

    CAS  Google Scholar 

  • Bashiri H, Jalali HM, Rasa H (2014) Determination of intracellular levels of reactive oxygen species using the 2, 7-dichlorofluorescein diacetate assay by kinetic Monte Carlo simulation. Prog React Kinet Mech 39:281–291

    Article  CAS  Google Scholar 

  • Bashiri H, Mohamadi S (2016) Hydrogen sulfide decomposition on Ni surface: a kinetic Monte Carlo study. Appl Catal A 509:105–110

    Article  CAS  Google Scholar 

  • Bashiri H, Pourbeiram N (2016) Biodiesel production through transesterification of soybean oil: a kinetic Monte Carlo study. J Mol Liq 223:10–15

    Article  CAS  Google Scholar 

  • Berberidou C, Kitsiou V, Karahanidou S, Lambropoulou DA, Kouras A, Kosma CI, Albanis TA, Poulios I (2016) Photocatalytic degradation of the herbicide clopyralid: kinetics, degradation pathways and ecotoxicity evaluation. J Chem Technol Biotechnol 91:2510–2518

    Article  CAS  Google Scholar 

  • Cappus D, Xu C, Ehrlich D, Dillmann B, Ventrice C Jr, Al Shamery K, Kuhlenbeck H, Freund H-J (1993) Hydroxyl groups on oxide surfaces: NiO (100), NiO (111) and Cr2O3 (111). Chem Phys 177:533–546

    Article  CAS  Google Scholar 

  • Carneiro JT, Savenije TJ, Moulijn JA, Mul G (2011) How phase composition influences optoelectronic and photocatalytic properties of TiO2. J Phys Chem C 115:2211–2217

    Article  CAS  Google Scholar 

  • Carraway ER, Hoffman AJ, Hoffmann MR (1994) Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ Sci Technol 28:786–793

    Article  CAS  Google Scholar 

  • Carter E, Carley AF, Murphy DM (2007) Evidence for O2-radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J Phys Chem C 111:10630–10638

    Article  CAS  Google Scholar 

  • Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278

    Article  CAS  Google Scholar 

  • Chen C-C, Hu S-H, Fu Y-P (2015) Effects of surface hydroxyl group density on the photocatalytic activity of Fe3+-doped TiO2. J Alloys Compd 632:326–334

    Article  CAS  Google Scholar 

  • Chen Y, Yang S, Wang K, Lou L (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J Photochem Photobiol, A 172:47–54

    Article  CAS  Google Scholar 

  • Chen Y, Liu K (2016) Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light. Chem Eng J 302:682–696

    Article  CAS  Google Scholar 

  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady M (2004) Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. J Photochem Photobiol, A 168:39–45

    Article  CAS  Google Scholar 

  • Devi LG, Nithya P, Abraham C, Kavitha R (2017) Influence of surface metallic silver deposit and surface fluorination on the photocatalytic activity of rutile TiO2 for the degradation of crystal violet a cationic dye under UV light irradiation. Mater Today Commun 10:1–13

    Article  CAS  Google Scholar 

  • Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys Rev Lett. 97:166803

    Article  CAS  Google Scholar 

  • Dou Y, Torralva BR, Allen RE (2004) Interplay of electronic and nuclear degrees of freedom in a femtosecond-scale photochemical reaction. Chem Phys Lett 392:352–357

    Article  CAS  Google Scholar 

  • Dror I, Fink L, Weiner L, Berkowitz B (2020) Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species. Chemosphere 258:127266

    Article  CAS  Google Scholar 

  • Dutta S, Parsons SA, Bhattacharjee C, Jarvis P, Datta S, Bandyopadhyay S (2009) Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface. Chem Eng J 155:674–679

    Article  CAS  Google Scholar 

  • El Mragui A, Logvina Y, Pinto da Silva L, Zegaoui O, Esteves da Silva JC (2019) Synthesis of Fe-and Co-doped TiO2 with improved photocatalytic activity under visible irradiation toward carbamazepine degradation. Materials 12:3874

    Article  CAS  Google Scholar 

  • Emeline AV, Ryabchuk V, Serpone N (2000) Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions: prospect of distinguishing between two kinetic models. J Photochem Photobiol, A 133:89–97

    Article  CAS  Google Scholar 

  • Forsythe GE (1977) Computer methods for mathematical computations. Prentice-Hall series in automatic computation 259

  • Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B 99:398–406

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Galindo C, Jacques P, Kalt A (2000) Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative mechanistic and kinetic investigations. J Photochem Photobiol, A 130:35–47

    Article  CAS  Google Scholar 

  • Garrafa-Gálvez HE, Alvarado-Beltrán CG, Almaral-Sánchez JL, Hurtado-Macías A, Garzon-Fontecha AM, Luque PA, Castro-Beltrán A (2019) Graphene role in improved solar photocatalytic performance of TiO2-RGO nanocomposite. Chem Phys 521:35–43

    Article  CAS  Google Scholar 

  • Gerischer H (1995) Photocatalysis in aqueous solution with small TiO2 particles and the dependence of the quantum yield on particle size and light intensity. Electrochim Acta 40:1277–1281

    Article  CAS  Google Scholar 

  • Ghatak HR (2014) Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit Rev Environ Sci Technol 44:1167–1219

    Article  CAS  Google Scholar 

  • Gierer J, Yang E, Reitberger T (1994) On the significance of the superoxide radical in oxidative delignification, studied with 4-t-butylsyringol and 4-t-butylguaiacol. Part I. The mechanism of aromatic ring opening. Holzforschung-Int J Biol Chem Phys Technol Wood 48:405–414

    CAS  Google Scholar 

  • Gnanamozhi P, Renganathan V, Chen S-M, Pandiyan V, Arockiaraj MA, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF (2020) Influence of nickel concentration on the photocatalytic dye degradation (methylene blue and reactive red 120) and antibacterial activity of ZnO nanoparticles. Ceram Int 46:18322–18330

    Article  CAS  Google Scholar 

  • Gomez-Ruiz B, Ribao P, Diban N, Rivero MJ, Ortiz I, Urtiaga A (2018) Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2− rGO catalyst. J Hazard Mater 344:950–957

    Article  CAS  Google Scholar 

  • Grzechulska J, Morawski AW (2002) Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl Catal B 36:45–51

    Article  CAS  Google Scholar 

  • Guo MY, Ng AMC, Liu F, Djurišić AB, Chan WK (2011) Photocatalytic activity of metal oxides—the role of holes and OH radicals. Appl Catal B 107:150–157

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng, C 32:12–17

    Article  CAS  Google Scholar 

  • Han F, Kambala V, Dharmarajan R, Liu Y, Naidu R (2018) Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts. Environ Technol Innov 12:27–42

    Article  Google Scholar 

  • Haque M, Khan A, Umar K, Mir NA, Muneer M, Harada T, Matsumura M (2013) Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2. Energy Environ Focus 2:73–78

    Article  Google Scholar 

  • Hirakawa T, Kominami H, Ohtani B, Nosaka Y (2001) Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy. J Phys Chem B 105:6993–6999

    Article  CAS  Google Scholar 

  • Hitam C, Jalil A (2020) A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J Environ Manag 258:110050

    Article  CAS  Google Scholar 

  • Hossain MK, Pervez M, Uddin MJ, Tayyaba S, Mia M, Bashar M, Jewel M, Haque M, Hakim M, Khan MA (2018) Influence of natural dye adsorption on the structural, morphological and optical properties of TiO2 based photoanode of dye-sensitized solar cell. Mater Sci-Pol 36:93–101

    Article  CAS  Google Scholar 

  • Hu A, Liang R, Zhang X, Kurdi S, Luong D, Huang H, Peng P, Marzbanrad E, Oakes K, Zhou Y (2013) Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J Photochem Photobiol, A 256:7–15

    Article  CAS  Google Scholar 

  • Huang Y, Wang H, Huang K, Huang D, Yin S, Guo Q (2020) Degradation kinetics and mechanism of 3-chlorobenzoic acid in anoxic water environment using graphene/TiO2 as photocatalyst. Environ Technol 41:2165–2179

    Article  CAS  Google Scholar 

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 83:3146–3152

    Article  CAS  Google Scholar 

  • Kaur P, Sud D (2012) Photocatalytic degradation of quinalphos in aqueous TiO2 suspension: reaction pathway and identification of intermediates by GC/MS. J Mol Catal a: Chem 365:32–38

    Article  CAS  Google Scholar 

  • Kazeminezhad I, Sadollahkhani A (2016) Influence of pH on the photocatalytic activity of ZnO nanoparticles. J Mater Sci: Mater Electron 27:4206–4215

    CAS  Google Scholar 

  • Khalifa M, Bidaisee S (2018) The importance of clean water. Sch J Appl Sci Res 1:17–20

    Google Scholar 

  • Khan A, Khan R, Waseem A, Iqbal A, Shah ZH (2016) CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg Chem Commun 72:33–41

    Article  CAS  Google Scholar 

  • Kharche N, Hybertsen MS, Muckerman JT (2014) Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy. Phys Chem Chem Phys 16:12057–12066

    Article  CAS  Google Scholar 

  • Krýsa J, Waldner G, Měšt’ánková H, Jirkovský J, Grabner G (2006) Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: roles of adsorption processes and mechanistic complexity. Appl Catal B 64:290–301

    Article  CAS  Google Scholar 

  • Kuang L, Zhao Y, Zhang W, Ge S (2016) Roles of reactive oxygen species and holes in the photodegradation of cationic and anionic dyes by TiO 2 under UV irradiation. J Environ Eng 142:04015065

    Article  CAS  Google Scholar 

  • Kumar S, Singh V, Tanwar A (2016) Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles. J Mater Sci: Mater Electron 27:2166–2173

    CAS  Google Scholar 

  • Kunat M, Girol SG, Burghaus U, Wöll C (2003) The interaction of water with the oxygen-terminated, polar surface of ZnO. J Phys Chem B 107:14350–14356

    Article  CAS  Google Scholar 

  • Lai CW, Juan JC, Ko WB, Bee Abd Hamid S (2014) An overview: recent development of titanium oxide nanotubes as photocatalyst for dye degradation. Int J Photoenergy 2014:1-14

  • Lau W-J, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245:321–348

    Article  CAS  Google Scholar 

  • Lerkkasemsan N (2010) Mechanistic modeling of biodiesel production via heterogeneous catalysis, Master Thesis, Virginia Tech

  • Li C, Zhou H, Yang S, Wei L, Han Z, Zhang Y, Pan H (2019) Preadsorption of O2 on the exposed (001) facets of ZnO nanostructures for enhanced sensing of gaseous acetone. ACS Appl Nano Mater 2:6144–6151

    Article  CAS  Google Scholar 

  • Li F, Li X (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48:1103–1111

    Article  CAS  Google Scholar 

  • Li Q, Gao T, Wang Y, Wang T (2005) Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl Phys Lett 86:123117

    Article  CAS  Google Scholar 

  • Li R, Song X, Huang Y, Fang Y, Jia M, Ma W (2016) Visible-light photocatalytic degradation of azo dyes in water by Ag3PO4: an unusual dependency between adsorption and the degradation rate on pH value. J Mol Catal a: Chem 421:57–65

    Article  CAS  Google Scholar 

  • Li S, Chen H, Wang X, Dong X, Huang Y, Guo D (2020) Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system. Environ Sci Pollut Res 27:29599–29611

    Article  CAS  Google Scholar 

  • Li Y-F, Selloni A (2013) Theoretical study of interfacial electron transfer from reduced anatase TiO2 (101) to adsorbed O2. J Am Chem Soc 135:9195–9199

    Article  CAS  Google Scholar 

  • Li Y-F, Zhang W-P, Li X, Yu Y (2014) TiO2 nanoparticles with high ability for selective adsorption and photodegradation of textile dyes under visible light by feasible preparation. J Phys Chem Solids 75:86–93

    Article  CAS  Google Scholar 

  • Liang C-Z, Sun S-P, Li F-Y, Ong Y-K, Chung T-S (2014) Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci 469:306–315

    Article  CAS  Google Scholar 

  • Liu B, Zhao X, Terashima C, Fujishima A, Nakata K (2014) Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys Chem Chem Phys 16:8751–8760

    Article  CAS  Google Scholar 

  • Liu G, Li X, Zhao J, Horikoshi S, Hidaka H (2000) Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination. J Mol Catal a: Chem 153:221–229

    Article  CAS  Google Scholar 

  • Malakootian M, Nasiri A, Asadipour A, Kargar E (2019) Facile and green synthesis of ZnFe2O4@ CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Saf Environ Prot 129:138–151

    Article  CAS  Google Scholar 

  • Mao Y, Schoeneich C, Asmus KD (1991) Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization: a combined photocatalytic and radiation chemical study. J Phys Chem 95:10080–10089

    Article  CAS  Google Scholar 

  • Martins JB, Andrés J, Longo E, Taft C (1996) H2O and H2 interaction with ZnO surfaces: a MNDO, AM1, and PM3 theoretical study with large cluster models. Int J Quantum Chem 57:861–870

    Article  CAS  Google Scholar 

  • Mattioli G, Filippone F, Caminiti R, Bonapasta AA (2008) Short hydrogen bonds at the water/TiO2 (anatase) interface. J Phys Chem C 112:13579–13586

    Article  CAS  Google Scholar 

  • Minero C, Maurino V, Vione D (2013) Photocatalytic mechanisms and reaction pathways drawn from kinetic and probe molecules. Photocatal Water Purif, Wiley

  • Montoya JF, Ivanova I, Dillert R, Bahnemann DW, Salvador P, Peral J (2013) Catalytic role of surface oxygens in TiO2 photooxidation reactions: aqueous benzene photooxidation with Ti18O2 under anaerobic conditions. J Phys Chem Lett 4:1415–1422

    Article  CAS  Google Scholar 

  • Montoya JF, Peral J, Salvador P (2014) Comprehensive kinetic and mechanistic analysis of TiO2 photocatalytic reactions according to the direct–indirect model:(I) Theoretical approach. J Phys Chem C 118:14266–14275

    Article  CAS  Google Scholar 

  • Mousavi SM, Mahjoub AR, Abazari R (2017) Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. J Mol Liq 242:512–519

    Article  CAS  Google Scholar 

  • Mrowetz M, Selli E (2006) Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions. J Photochem Photobiol, A 180:15–22

    Article  CAS  Google Scholar 

  • Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1-25

  • Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Estonian Acad Sci Chem 50:59–80

    Article  CAS  Google Scholar 

  • Nagao M (1971) Physisorption of water on zinc oxide surface. J Phys Chem 75:3822–3828

    Article  CAS  Google Scholar 

  • Navarro P, Gabaldón JA, Gómez-López VM (2017) Degradation of an azo dye by a fast and innovative pulsed light/H2O2 advanced oxidation process. Dyes Pigm 136:887–892

    Article  CAS  Google Scholar 

  • Nguyen VN, Tran DT, Nguyen MT, Le TTT, Ha MN, Nguyen MV, Pham TD (2018) Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites. Res Chem Intermed 44:3081–3095

    Article  CAS  Google Scholar 

  • Norton P, Tapping R, Goodale J (1977) A photoemission study of the interaction of Ni (100), (110) and (111) surfaces with oxygen. Surf Sci 65:13–36

    Article  CAS  Google Scholar 

  • Nosaka Y, Yamashita Y, Fukuyama H (1997) Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. J Phys Chem B 101:5822–5827

    Article  CAS  Google Scholar 

  • Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  Google Scholar 

  • Okamoto K-i, Yamamoto Y, Tanaka H, Tanaka M, Itaya A (1985) Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull Chem Soc Jpn 58:2015–2022

    Article  CAS  Google Scholar 

  • Patrick CE, Giustino F (2014) Structure of a water monolayer on the anatase TiO2 (101) surface. Physical Review Applied 2:014001

    Article  CAS  Google Scholar 

  • Peighambardoust NS, Asl SK, Mohammadpour R, Asl SK (2018) Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochim Acta 270:245–255

    Article  CAS  Google Scholar 

  • Pelizzetti E, Minero C (1993) Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Electrochim Acta 38:47–55

    Article  CAS  Google Scholar 

  • Peng J, Lu T, Ming H, Ding Z, Yu Z, Zhang J, Hou Y (2019) Enhanced photocatalytic ozonation of phenol by Ag/ZnO nanocomposites. Catalysts 9:1006

    Article  CAS  Google Scholar 

  • Qian G, Peng Q, Zou D, Wang S, Yan B (2020) Hydrothermal synthesis of flake-flower NiO and its gas sensing performance to CO. Front Mater 7:216

    Article  Google Scholar 

  • Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann DW, Pan JH (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90

    Article  CAS  Google Scholar 

  • Rafiee M, Bashiri H (2019) Dynamic Monte Carlo simulations of the reaction mechanism of hydrogen production from formic acid on Ni(1 0 0). Appl Surf Sci 475:720–728

    Article  CAS  Google Scholar 

  • Rafiee M, Bashiri H (2020) Application of response surface methodology and dynamic Monte Carlo simulation to study the hydrogen production from formic acid on Ni(100). Mater Sci Eng B 262:114729

    Article  CAS  Google Scholar 

  • Rafiee M, Bashiri H (2020) Catalytic decomposition of formic acid on Cu(100): optimization and dynamic Monte Carlo simulation. Catal Commun 137:105942

    Article  CAS  Google Scholar 

  • Ranjbar PZ, Ayati B, Ganjidoust H (2019) Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO2 nanoparticles. J Environ Sci 79:213–224

    Article  Google Scholar 

  • Rauf M, Meetani M, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    Article  CAS  Google Scholar 

  • Reddy IN, Reddy CV, Sreedhar A, Shim J, Cho M, Yoo K, Kim D (2018) Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136

    Article  CAS  Google Scholar 

  • Reina AC, Santos-Juanes L, Sánchez JG, López JC, Rubio MM, Puma GL, Pérez JS (2015) Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA). Appl Catal B 166:295–301

    Article  CAS  Google Scholar 

  • Rengifo-Herrera J, Pierzchała K, Sienkiewicz A, Forró L, Kiwi J, Pulgarin C (2009) Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl Catal B 88:398–406

    Article  CAS  Google Scholar 

  • Rothenberger G, Moser J, Graetzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059

    Article  CAS  Google Scholar 

  • Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933

    Article  CAS  Google Scholar 

  • Sabouri Z, Akbari A, Hosseini HA, Darroudi M (2018) Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct 1173:931–936

    Article  CAS  Google Scholar 

  • Safieddine D, Kachenoura A, Albera L, Birot G, Karfoul A, Pasnicu A, Biraben A, Wendling F, Senhadji L, Merlet I (2012) Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP J Adv Signal Process 2012:1–15

    Article  Google Scholar 

  • Sahel K, Elsellami L, Mirali I, Dappozze F, Bouhent M, Guillard C (2016) Hydrogen peroxide and photocatalysis. Appl Catal B 188:106–112

    Article  CAS  Google Scholar 

  • Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111:17038–17043

    Article  CAS  Google Scholar 

  • Samadi M, Ahmadi S, Poureshgh Y, Shabanloo A, Rahmani Z, Vanaei Tabar M (2017) Efficiency of Mn2/H2O2 process in removal of reactiveblue 19 dyes from aquatic environments. J Occupat Environ Health 2:247–258

    Google Scholar 

  • Sathishkumar P, Anandan S, Maruthamuthu P, Swaminathan T, Zhou M, Ashokkumar M (2011) Synthesis of Fe3+ doped TiO2 photocatalysts for the visible assisted degradation of an azo dye. Colloids Surf, A 375:231–236

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Sengunthar P, Bhavsar K, Balasubramanian C, Joshi U (2020) Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites. Appl Phys A 126:1–9

    Article  CAS  Google Scholar 

  • Shampine LF, Reichelt MW (1997) The matlab ode suite. SIAM J Sci Comput 18:1–22

    Article  Google Scholar 

  • Shams Ghamsari Z, Bashiri H (2020) Hydrogen production through photoreforming of methanol by Cu(s)/TiO2 nanocatalyst: optimization and simulation. Surf Interfaces 21:100709

    Article  CAS  Google Scholar 

  • Simion C, Florea O, Stanoiu A (2017) Gas sensing mechanism involved in H2S detection with NiO loaded SnO2 gas sensors. Sci Technol 20:415–425

    Google Scholar 

  • Simon YDT, Hadis B, Estella TN, Arabamiri M, Serges D, Arnaud KT, Samuel L, Minoo T, Michael S, Reinhard S (2020) Urea and green tea like precursors for the preparation of g-C3N4 based carbon nanomaterials (CNMs) composites as photocatalysts for photodegradation of pollutants under UV light irradiation. J Photochem Photobiol A Chem 398: 112596

  • Sivalingam G, Nagaveni K, Hegde M, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B 45:23–38

    Article  CAS  Google Scholar 

  • Stets S, do Amaral B, Schneider JT, de Barros IR, de Liz MV, Ribeiro RR, Nagata N, Peralta-Zamora P (2018) Antituberculosis drugs degradation by UV-based advanced oxidation processes. J Photochem Photobiol A Chem 353:26-33

  • Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2007) Dynamics of efficient electron–hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 9:1453–1460

    Article  CAS  Google Scholar 

  • Tan S, Feng H, Ji Y, Wang Y, Zhao J, Zhao A, Wang B, Luo Y, Yang J, Hou J (2012) Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1× 1 surface. J Am Chem Soc 134:9978–9985

    Article  CAS  Google Scholar 

  • Tang X, Wang Z, Wang Y (2018) Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chem Phys Lett 691:408–414

    Article  CAS  Google Scholar 

  • Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  CAS  Google Scholar 

  • Turkten N, Cinar Z (2017) Photocatalytic decolorization of azo dyes on TiO2: prediction of mechanism via conceptual DFT. Catal Today 287:169–175

    Article  CAS  Google Scholar 

  • Vagı M, Petsas A (2017) Advanced oxidation processes for the removal of pesticides from wastewater: recent review and trends, 15th International Conference on Environmental Science and Technology. CEST2017, Rhodes, Greece

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage 93:154–168

    Article  CAS  Google Scholar 

  • Visan A, van Ommen JR, Kreutzer MT, Lammertink RG (2019) Photocatalytic reactor design: guidelines for kinetic investigation. Ind Eng Chem Res 58:5349–5357

    Article  CAS  Google Scholar 

  • Vittadini A, Casarin M, Selloni A (2007) Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theor Chem Acc 117:663–671

    Article  CAS  Google Scholar 

  • Wageh S, Almazroai LS, Alshahrie A, Al-Ghamdi AA (2018) Enhanced visible light photo-catalytic activity of ZnO and Ag-Doped ZnO (ZnO: Ag) nanoparticles. J Nanosci Nanotechnol 18:7682–7690

    Article  CAS  Google Scholar 

  • Wahab HS, Bredow T, Aliwi SM (2008) Computational investigation of water and oxygen adsorption on the anatase TiO2 (1 0 0) surface. J Mol Struct (thoechem) 868:101–108

    Article  CAS  Google Scholar 

  • Walle LE, Borg A, Johansson E, Plogmaker S, Rensmo H, Uvdal P, Sandell A (2011) Mixed dissociative and molecular water adsorption on anatase TiO2 (101). J Phys Chem C 115:9545–9550

    Article  CAS  Google Scholar 

  • Wan X, Ma R, Tie S, Lan S (2014) Effects of calcination temperatures and additives on the photodegradation of methylene blue by tin dioxide nanocrystals. Mater Sci Semicond Process 27:748–757

    Article  CAS  Google Scholar 

  • Wang X-q, Han S-f, Zhang Q-w, Zhang N, Zhao D-d (2018): Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/TiO2, MATEC Web of Conferences. EDP Sciences, pp. 03006

  • Wang Y, Shi R, Lin J, Zhu Y (2010) Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl Catal B 100:179–183

    Article  CAS  Google Scholar 

  • Westall F, Brack A (2018) The importance of water for life. Space Sci Rev 214:50

    Article  Google Scholar 

  • Wu X, Selloni A, Lazzeri M, Nayak SK (2003) Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2 (110) surface. Phys Rev B 68:241402

    Article  CAS  Google Scholar 

  • Xia Y, Wang J, Chen R, Zhou D, Xiang L (2016) A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application. Curr Comput-Aided Drug Des 6:148

    Google Scholar 

  • Yao S, Qu F, Wang G, Wu X (2017) Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J Alloys Compd 724:695–702

    Article  CAS  Google Scholar 

  • Yassıtepe E, Yatmaz HC, Öztürk C, Öztürk K, Duran C (2008) Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J Photochem Photobiol, A 198:1–6

    Article  CAS  Google Scholar 

  • Yoneyama H, Torimoto T (2000) Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catal Today 58:133–140

    Article  CAS  Google Scholar 

  • Yu JC, Lin J, Lo D, Lam S (2000) Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2. Langmuir 16:7304–7308

    Article  CAS  Google Scholar 

  • Yu L, Wang L, Sun X, Ye D (2018) Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J Environ Sci 73:138–146

    Article  CAS  Google Scholar 

  • Yue X, Zhang T, Yang D, Qiu F, Fang J (2018) In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oil–water separation. J Ind Eng Chem 61:188–196

    Article  CAS  Google Scholar 

  • Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654

    Article  Google Scholar 

  • Zheng Q, Ross J (1991) Comparison of deterministic and stochastic kinetics for nonlinear systems. J Chem Phys 94:3644–3648

    Article  CAS  Google Scholar 

  • Zhou Z, Liu X, Sun K, Lin C, Ma J, He M, Ouyang W (2019) Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chem Eng J 372:836–851

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the University of Kashan for supporting this work by Grant No. (1073182/3).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: H. B.; M. A. Collected the data, analysis, and/or interpretation of data: M. A. Wrote the manuscript: M. A.; H. B. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hadis Bashiri.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabameri, M., Bashiri, H. A new approach to study the degradation of the organic pollutants by A-doped MxOy/B photocatalysts. Environ Sci Pollut Res 29, 39139–39163 (2022). https://doi.org/10.1007/s11356-022-18923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18923-7

Keywords

Navigation