Skip to main content

Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin

Abstract

Man-made static magnetic fields (SMFs) widely exist in human life as a physical environmental factor. However, the biological responses to moderate SMFs exposure and their underlying mechanisms are largely unknown. The present study was focused on exploring the nervous responses to moderate-intensity SMFs at 0.5 T and 1 T in Caenorhabditis elegans (C. elegans). We found that SMFs at either 0.5 T or 1 T had no statistically significant effects on the locomotor behaviors, while the 1 T magnetic field increased pharyngeal pumping. The avoidance behavior of the pathogenic Pseudomonas aeruginosa was greatly decreased in either 0.5 T or 1 T SMFs exposed nematodes, and the learning index was reducede from 0.52 ± 0.11 to 0.23 ± 0.17 and 0.16 ± 0.11, respectively. The total serotonin level was increased by 17.08% and 16.45% with the treatment of 0.5 T and 1 T SMF, compared to the control group; however, there were minimal effects of SMFs on other three neurotransmitters including choline, γ-aminobutyric acid (GABA), dopamine. RT-qPCR was used to further investigate the expression of serotonin-related genes, including rate-limiting enzymes, transcription factors and transport receptors. The expression levels of tph-1 and unc-86 genes were increased by SMF exposure, while those of ocr-2, osm-9, ser-1 and mod-1 genes were decreased. With the staining of lipid in either wild-type N2 or tph-1 mutants, we found that 0.5 T and 1 T SMFs decreased fat storage in C. elegans via serotonin pathway. Our study demonstrated that moderate-intensity SMFs induced neurobehavioral disorder and the reduction of fat storage by disturbing the secretion of serotonin in C. elegans, which provided new insights into elucidating nervous responses of C. elegans to moderate-intensity SMFs.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Anderson A, Laurenson-Schafer H, Partridge FA, Hodgkin J, McMullan R (2013): Serotonergic Chemosensory Neurons Modify the C. elegans Immune Response by Regulating G-Protein Signaling in Epithelial Cells. PLOS Pathog 9

  • Barbagallo B, Philbrook A, Touroutine D, Banerjee N, Oliver D, Lambert CM, Francis MM (2017) Excitatory neurons sculpt GABAergic neuronal connectivity in the C-elegans motor circuit. Development 144:1807–1819

    CAS  Google Scholar 

  • Bessho K, Yamada S, Kunitani T, Nakamura T, Hashiguchi T, Tanimoto Y, Harada S, Yamamoto H, Hosono R (1995) Biological responses in caenorhabditis-elegans to high magnetic-fields. Experientia 51:284–288

    CAS  Article  Google Scholar 

  • Brenner S (1974) Genetics of caenorhabditis-elegans. Genetics 77:71–94

    CAS  Article  Google Scholar 

  • Cañedo L, Cantú RGX, Hernández-R J (2003) Magnetic field exposure during gestation: pineal and cerebral cortex serotonin in the rat. Int J Dev Neurosci 21:263–266

    Article  CAS  Google Scholar 

  • Cao X, Wang X, Chen H, Li H, Tariq M, Wang C, Zhou Y, Liu Y (2019) Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. Environ Pollut 244:947–957

    CAS  Article  Google Scholar 

  • Carter CS et al (2020) Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes (vol 32, pg 561, 2020). Cell Metab 32:1076–1076

    CAS  Article  Google Scholar 

  • Clites BL, Pierce JT (2017): Identifying Cellular and Molecular Mechanisms for Magnetosensation. In: Zoghbi HY (Zoghbi HY)^(Zoghbi HYs)|,*Annual Review of Neuroscience, pp. 231–250

  • Coots A, Shi RY, Rosen AD (2004) Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord. J Neurol Sci 222:55–57

    Article  Google Scholar 

  • Corsi AK, Wightman B, Chalfie M (2015): A Transparent window into biology: A primer on Caenorhabditis elegans. WormBook : the online review of C. Elegans Biol 1–31

  • de Vocht F, van Drooge H, Engels H, Kromhout H (2006) Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. J Magn Reson Imaging 23:197–204

    Article  Google Scholar 

  • Dincic M, Krstic DZ, Colovic MB, Ostojic JN, Kovacevic S, De Luka SR, Djordjevic DM, Cirkovic S, Brkic P, Todorovic J (2018) Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field. Int J Radiat Biol 94:1062–1071

    CAS  Article  Google Scholar 

  • Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217

    Article  Google Scholar 

  • Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS (2008) Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: Role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 86:2553–2563

    CAS  Article  Google Scholar 

  • Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI (2013) Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans. Cell 154:1023–1035

    CAS  Article  Google Scholar 

  • Goraghani MS, Ahmadi-Zeidabadi M, Bakhshaei S, Shabani M, Ravandi SG, Rezaei-Zarchi S, Nozari M (2019) Behavioral consequences of simultaneous postnatal exposure to MK-801 and static magnetic field in male Wistar rats. Neurosci Lett 701:77–83

    Article  CAS  Google Scholar 

  • Hernadi L, Laszlo JF (2014) Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia. Int J Radiat Biol 90:547–553

    CAS  Article  Google Scholar 

  • Hobert O (2013): The neuronal genome of Caenorhabditis elegans. WormBook : the online review of C. Elegans Biol 1–106

  • Houpt TA, Carella L, Gonzalez D, Janowitz I, Mueller A, Mueller K, Neth B, Smith JC (2011) Behavioral effects on rats of motion within a high static magnetic field. Physiol Behav 102:338–346

    CAS  Article  Google Scholar 

  • Houpt TA, Cassell J, Carella L, Neth B, Smith JC (2012) Head tilt in rats during exposure to a high magnetic field. Physiol Behav 105:388–393

    CAS  Article  Google Scholar 

  • Ijomone OM, Miah MR, Akingbade GT, Bucinca H, Aschner M (2020) Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity. Neurotox Res 37:1018–1028

    CAS  Article  Google Scholar 

  • Ishita Y, Chihara T, Okumura M (2020) Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes. Neurosci Res 154:9–19

    CAS  Article  Google Scholar 

  • Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P (2017) Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer’s Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 57:1017–1039

    CAS  Article  Google Scholar 

  • Jing D, Shen G, Cai J, Li F, Huang J, Wang Y, Xu Q, Tang C, Luo E (2010) Effects of 180 mT static magnetic fields on diabetic wound healing in rats. Bioelectromagnetics 31:640–648

    Article  Google Scholar 

  • Kroeker G, Parkinson D, Vriend J, Peeling J (1996) Neurochemical effects of static magnetic field exposure. Surg Neurol 45:62–66

    CAS  Article  Google Scholar 

  • Lee C, Chen H, Yeh L, Hong M, Huang GS (2012) Dosage-dependent Induction of Behavioral Decline in Caenorhabditis elegans by Long-term Treatment of Static Magnetic Fields. J Radiat Res 53:24–32

    CAS  Article  Google Scholar 

  • Lee K, Mylonakis E (2017) An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans. Cell Rep 20:2501–2512

    CAS  Article  Google Scholar 

  • Li Q, Liao Z, Gu L, Zhang L, Zhang L, Tian X, Li J, Fang Z, Zhang X (2020): Moderate Intensity Static Magnetic Fields Prevent Thrombus Formation in Rats and Mice. Bioelectromagnetics 41:52–62

  • Liang X, Wang Y, Cheng J, Ji Q, Wang Y, Wu T, Tang M (2020) Mesoporous Silica Nanoparticles at Predicted Environmentally Relevant Concentrations Cause Impairments in GABAergic Motor Neurons of Nematode Caenorhabditis elegans. Chem Res Toxicol 33:1665–1676

    CAS  Article  Google Scholar 

  • Lin Y, Bao B, Yin H, Wang X, Feng A, Zhao L, Nie X, Yang N, Shi G, Liu J (2019): Peripheral cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin synthesis. BMC BIOL 17

  • Lockwood DR, Kwon B, Smith JC, Houpt TA (2003) Behavioral effects of static high magnetic fields on unrestrained and restrained mice. Physiol Behav 78:635–640

    CAS  Article  Google Scholar 

  • Meisel JD, Kim DH (2014) Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans. Trends Immunol 35:465–470

    CAS  Article  Google Scholar 

  • Nass R, Hall DH, Miller DM, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. P Natl Acad Sci USA 99:3264–3269

    CAS  Article  Google Scholar 

  • Okano H, Ino H, Osawa Y, Osuga T, Tatsuoka H (2012) The effects of moderate-intensity gradient static magnetic fields on nerve conduction. Bioelectromagnetics 33:518–526

    Article  Google Scholar 

  • Osuga T, Tatsuoka H (1999) Effect of 1.5 T steady magnetic field on neuroconduction of a bullfrog sciatic nerve in a partially active state within several hours after extraction. Magn Reson Imaging 17:791–794

    CAS  Article  Google Scholar 

  • Pais-Roldan P, Singh AP, Schulz H, Yu X (2016): High magnetic field induced otolith fusion in the zebrafish larvae. SCI REP-UK 6

  • Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475

    CAS  Article  Google Scholar 

  • Rivadulla C, Aguilar J, Coletti M, Aguila J, Prieto S, Cudeiro J (2018): Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey. SCI REP-UK 8

  • Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173

    CAS  Article  Google Scholar 

  • Shao J, Zhang X, Cheng H, Yue X, Zou W, Kang L (2019) Serotonergic neuron ADF modulates avoidance behaviors by inhibiting sensory neurons in C-elegans. Pflug Arch Eur J Phy 471:357–363

    CAS  Article  Google Scholar 

  • Shen J, Chao Y, Du L (2007) Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neurosci Lett 415:164–168

    CAS  Article  Google Scholar 

  • Srinivasan S, Sadegh L, Elle IC, Christensen AGL, Faergeman NJ, Ashrafi K (2008) Serotonin regulates C-elegans fat and feeding through independent molecular mechanisms. Cell Metab 7:533–544

    CAS  Article  Google Scholar 

  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    CAS  Article  Google Scholar 

  • Sze JY, Zhang SY, Li J, Ruvkun G (2002) The C-elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development 129:3901–3911

    CAS  Article  Google Scholar 

  • Tatum MC, Ooi FK, Chikka MR, Chauve L, Martinez-Velazquez LA, Steinbusch HWM, Morimoto RI, Prahlad V (2015) Neuronal Serotonin Release Triggers the Heat Shock Response in C. elegans in the Absence of Temperature Increase. Curr Biol 25:163–174

    CAS  Article  Google Scholar 

  • Thongnak L, Pongchaidecha A, Lungkaphin A (2020) Renal Lipid Metabolism and Lipotoxicity in Diabetes. Am J Med Sci 359:84–99

    Article  Google Scholar 

  • Tkac I, Benneyworth MA, Nichols-Meade T, Steuer EL, Larson SN, Metzger GJ, Ugurbil K (2021): Long-term behavioral effects observed in mice chronically exposed to static ultra-high magnetic fields. Magn Reson Med 81:1544–1559

  • Todorovic D, Ilijin L, Mrdakovic M, Vlahovic M, Grcic A, Petkovic B, Peric-Mataruga V (2020) The impact of chronic exposure to a magnetic field on energy metabolism and locomotion ofBlaptica dubia. Int J Radiat Biol 96:1076–1083

    CAS  Article  Google Scholar 

  • Tsalik EL, Hobert O (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56:178–197

    Article  Google Scholar 

  • Van Huizen AV, Morton JM, Kinsey LJ, Von Kannon DG, Saad MA, Birkholz TR, Czajka JM, Cyrus J, Barnes FS, Beane WS (2019): Weak magnetic fields alter stem cell-mediated growth. SCI ADV 5, eaau7201-eaau7201

  • Vergallo C, Panzarini E, Tenuzzo BA, Mariano S, Tata AM, Dini L (2020) Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules 25:1398

    CAS  Article  Google Scholar 

  • Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J (2015): Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. ELIFE 4

  • Wang D, Wang Z, Zhang L, Li Z, Tian X, Fang J, Lu Q, Zhang X (2018) Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics 39:352–360

    CAS  Article  Google Scholar 

  • Ward BK, Tan GX, Roberts DC, Della Santina CC, Zee DS, Carey JP (2014): Strong Static Magnetic Fields Elicit Swimming Behaviors Consistent with Direct Vestibular Stimulation in Adult Zebrafish. PLOS ONE 9

  • Watanabe Y, Nakagawa M, Miyakoshi Y (1997) Enhancement of Lipid Peroxidation in the Liver of Mice Exposed to Magnetic Fields. Ind Health 35:285–290

    CAS  Article  Google Scholar 

  • Wu L, Dickman JD (2012) Neural Correlates of a Magnetic Sense. Science 336:1054–1057

    CAS  Article  Google Scholar 

  • Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M (2015) MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. Nanoscale 7:20460–20473

    CAS  Article  Google Scholar 

  • Zhang P, Na H, Liu Z, Zhang S, Xue P, Chen Y, Pu J, Peng G, Huang X, Yang F, Xie Z, Xu T, Xu P, Ou G, Zhang SO, Liu P (2012) Proteomic Study and Marker Protein Identification of Caenorhabditis elegans Lipid Droplets. Mol Cell Proteomics 11:317–328

    Article  CAS  Google Scholar 

  • Zhang SY, Sokolchik I, Blanco G, Sze JY (2004) Caenorhabditis elegans TRPV ion channel regulates 5HT biosynthesis in chemosensory neurons. Development 131:1629–1638

    CAS  Article  Google Scholar 

  • Zheng J, Greenway FL (2012) Caenorhabditis elegans as a model for obesity research. Int J Obes (lond) 36:186–194

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by Dean’s Fund of Hefei Institute of Physical Science (YZJJZX202014), the National Natural Science Foundation of China (52177227, 22006149) and Hundred Talents Program (E09BR22). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.

Author information

Authors and Affiliations

Authors

Contributions

LC contributed to methodology, formal analysis, investigation, data curation, writing-original draft, validation and writing—review and editing.

BY was involved in validation and methodology.

HD contributed to resources and funding acquisition.

TZ was involved in investigation.

YL contributed to methodology and formal analysis.

JW and ZC were involved in investigation and data curation.

AX contributed to resources, writing—review and editing, funding acquisition and supervision.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to An Xu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Yang, B., Du, H. et al. Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin. Environ Sci Pollut Res 29, 43102–43113 (2022). https://doi.org/10.1007/s11356-022-18898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18898-5

Keywords

  • Static magnetic fields
  • Avoidance behavior
  • Fat storage
  • C. elegans
  • Serotonin