Skip to main content

Advertisement

Log in

Pathways of soil N2O uptake, consumption, and its driving factors: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and materials are true and valid and can use general repositories saving.

References

  • Agyarko ME, Cowie A, Zwieten LV (2017) Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manage 61:129–137

    Article  CAS  Google Scholar 

  • B. Parkin T, F. Kaspar H, J. Sexstone A (1984) A gas-flow soil core method to measure field denitrification rates. Soil Biol Biochem 16:323–330

    Article  Google Scholar 

  • Bazylinski DA, Soohoo CK, Hollocher TC (1986) Growth of Pseudomonas aeruginosa on nitrous oxide. Appl Environ Microbiol 51:1239–1246

    Article  CAS  Google Scholar 

  • Bergaust L, Mao Y, Bakken LR (2010) Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous oxide reductase in Paracoccus denitrificans. Appl Environ Microbiol 76:6387–6396

    Article  CAS  Google Scholar 

  • Berkum PV, Keyser HH (1985) Anaerobic growth and denitrification among different serogroups of soybean rhizobia. Appl Environ Microbiol 49:772–777

    Article  Google Scholar 

  • Bhandari B, Nicholas D (1984) Denitrification of nitrate to nitrogen gas by washed cells of Rhizobium japonicum and by bacteroids from Glycine max. Planta 161:81–85

    Article  CAS  Google Scholar 

  • Braker G, Dörsch P, Bakken LR (2012) Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. FEMS Microbiol Ecol 79:542–554

    Article  CAS  Google Scholar 

  • Breitenbeck GA, Bremner JM (1989) Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fertil Soils 7:219–224

    Article  Google Scholar 

  • Cabello P (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546

    Article  CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  Google Scholar 

  • Cantarel AA, Bloor JM, Pommier T (2012) Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem. Glob Change Biol 18:2520–2531

    Article  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  • Chan YK, Barran LR, Bromfield E (1989) Denitrification activity of phage types representative of two populations of indigenous Rhizobium meliloti. Can J Microbiol 35:737–740

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A (2007) Soils, a sink for N2O? A review. Global Change Biol 13:1–17

    Article  Google Scholar 

  • Chen Z, Luo X, Hu RG, Wu MN, Wu J, Wei WX (2010) Impact of longterm fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbes Environ 60:850–861

    CAS  Google Scholar 

  • Chen X, Wang A, Hu L, Huang A, Li Y (2014) Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region. J Appl Ecol 25(3):752–758

    CAS  Google Scholar 

  • Chèneby D, Hartmann A, Hénault C (1998) Diversity of denitrifying microflora and ability to reduce N2O in two soils. Biol Fertil Soils 28:19–26

    Article  Google Scholar 

  • Christian JJ, Struwe S, Elberling B (2012) Temporal trends in N2O flux dynamics in a Danish wetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Global Change Biol 18:210–222

    Article  Google Scholar 

  • Ciarlo EA, Bartoloni N, Rubio G (2007) The effect of moisture on nitrous oxide emissions from soil and the N2O/(N2O+N2) ratio under laboratory conditions. Biol Fertil Soils 43:675–681

    Article  CAS  Google Scholar 

  • Cíntia C, Rute FN, Olga M (2020) The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 25:927–940

    Article  CAS  Google Scholar 

  • Claudio B (2011) Background levels of trace elements and soil geochemistry at regional level in NE Italy - ScienceDirect. J Geochem Explor 109:125–133

    Article  CAS  Google Scholar 

  • Clough T, Condron LM, Kammann C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Cui P, Fan F, Yin C (2016) Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol Biochem 93:131–141

    Article  CAS  Google Scholar 

  • Cui LL, Liang JH, Fu HB (2020) The contributions of socioeconomic and natural factors to the acid deposition over China. Chemosphere 253:126491

    Article  CAS  Google Scholar 

  • Daniel M, Heylen K, Rob JM (2016) Regulation of nitrogen metabolism in the nitrate-ammonifying soil bacterium Bacillus vireti and evidence for its ability to grow using N2O as electron acceptor. Environ Microbiol 18:13124

    Google Scholar 

  • Dell A, Pauleta SR, Sousa P (2010) A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 325:967–976

    Google Scholar 

  • Desloover JRD, Heylen K (2014) Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environ Microbiol 16:168

    Article  CAS  Google Scholar 

  • DeveÃvre OC, HorwaÂth WR (2000) Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol Biochem 32:1773–1785

    Article  Google Scholar 

  • Domeignoz-Horta LA, Putz M, Spor A (2016) Non-denitrifying nitrous oxide reducing bacteria-an effective N2O sink in soil. Soil Biol Biochem 103:376–379

    Article  CAS  Google Scholar 

  • Duxbury JM, Bouldin DR, Terry RE (1982) Emissions of nitrous oxide from soils. Nature 298:462–464

    Article  CAS  Google Scholar 

  • Emilio B, Daniel M, Bedmar EJ (2015) Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front Microbiol 6:537

    Google Scholar 

  • Feng J, Kq Z, Chen S (2014) Mechanism of N2O uptake and consumption by soil. A review. J Agro-Environ Sci 000:2084–2089

    CAS  Google Scholar 

  • Fernandes AT, Damas JM, Todorovic S (2010) The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 277:3176–3189

    Article  CAS  Google Scholar 

  • Fowler D, Pyle JA, Raven JA (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 368:1–13

    Google Scholar 

  • Goldberg SD, Gebauer G (2009) N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biol Biochem 41:1986–1995

    Article  CAS  Google Scholar 

  • Graf DR, Jones CM, Hallin S (2014) Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 9:0114118. https://doi.org/10.1371/journal.pone.0114118

    Article  CAS  Google Scholar 

  • Graf RH, Zhao DM, Jones MC (2016) Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils. Soil Biol Biochem 100:125–128

  • Guo B, Zheng X, Yu J (2020) Dissolved organic carbon enhances both soil N2O production and uptake. Global Ecol Conserv 24:e01264

    Article  Google Scholar 

  • Hallin S, Philippot L, Löffler FE (2018) Genomics and ecology of novel N2O reducing microorganisms. Trends Microbiol 26:43–55

    Article  CAS  Google Scholar 

  • Hansen M, Clough TJ, Elberling B (2014) Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biol Biochem 69:17–24

    Article  CAS  Google Scholar 

  • Hayakawa A, Akiyama H, Sudo S (2009) N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol Biochem 41:521–529

    Article  CAS  Google Scholar 

  • He X, Yin H, Fang C (2021) Metagenomic and q-PCR analysis reveals the effect of powder bamboo biochar on nitrous oxide and ammonia emissions during aerobic composting. Bioresour Technol 323:124567

    Article  CAS  Google Scholar 

  • Heather F, Georgios G, Matthew JS (2012) The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Environ Microbiol 14:1788–1800

    Article  CAS  Google Scholar 

  • Heincke M, Kaupenjohann M (1999) Effects of soil solution on the dynamics of N2O emissions: a review. Nutr Cycling Agroecosyst 55:133–157

    Article  CAS  Google Scholar 

  • Henry S, Texier S, Hallet S (2010) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10:3082–3092

    Article  CAS  Google Scholar 

  • Henry, (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 8:5181–5189

    Article  CAS  Google Scholar 

  • Herzberg G (1966) Molecular spectra and molecular structure. Electronic spectra and electronic structure of polyatomic molecules, vol 3. Van Nostrand, Reinhold, New York

    Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang ZY (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  Google Scholar 

  • Holloway P, McCormick W, Watson RJ, Chan YK (1996) Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol 178:1505

    Article  CAS  Google Scholar 

  • Jensen BB, Burris RH (1986) N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25:1083–1088

    Article  CAS  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Article  CAS  Google Scholar 

  • Jones CM, Wels A, Throbäck IN (2011) Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiol Ecol 76:541–552

    Article  CAS  Google Scholar 

  • Jones CM, Graf DR, Bru D (2013) The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426

    Article  CAS  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil M, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Chang 4:801–805

    Article  CAS  Google Scholar 

  • Juhanson J, Hallin S, Soderstrom M (2017) Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities. Soil Biol Biochem 115:82–91

    Article  CAS  Google Scholar 

  • Kern M, Simon J (2015) Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol 18:2899–2912

    Article  CAS  Google Scholar 

  • Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699

    Article  CAS  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  Google Scholar 

  • Liu J, Hou H, Sheng R (2012) Denitrifying communities differentially respond to flooding drying cycles in paddy soils. Appl Soil Ecol 62:155–162

    Article  Google Scholar 

  • Liu Q, Zhang YH, Liu BJ (2018) How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426:211–225

    Article  CAS  Google Scholar 

  • Liu XR, Zhao GX, Zhang QW (2018) Effects of biochar on nitrous oxide fluxes and the abundance of related functional genes from agriculture soil in the North China Plain Environmental. Science 39:3816–3825

    Google Scholar 

  • Loick N, Dixon E, Abalos D (2017) “Hot spots” of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil. Geoderma 305:336–345

    Article  CAS  Google Scholar 

  • Lu J, Liu JB, Rong S (2014) Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil. Chin J Appl Ecol 25:2879–2884

    CAS  Google Scholar 

  • Luo X, Zeng L, Wang L (2021) Abundance for subgroups of denitrifiers in soil aggregates associates with denitrifying enzyme activities under different fertilization regimes. Appl Soil Ecol 166(1):103983

    Article  Google Scholar 

  • Majeed MZ, Miambi E, Robert A (2012) Xylophagous termites: a potential sink for atmospheric nitrous oxide. Eur J Soil Biol 53:121–125

    Article  CAS  Google Scholar 

  • Majumdar D (2013) Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change. Crit Rev Environ Sci Technol 43:2653–2684

    Article  CAS  Google Scholar 

  • Martínez-Romero E (2006) Dinitrogen-fixing prokaryotes. The prokaryotes 793–817.

  • Mathieu O, Lévêque J, Hénault C (2006) Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biol Biochem 38:941–951

    Article  CAS  Google Scholar 

  • Miller M, Zebarth B, Dandie C (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40:2553–2562

    Article  CAS  Google Scholar 

  • Mónica MC, Tripp HJ, Frank IE, Vidoz ML, Calderoli PA, Donato M, Zehr JP, Aguilar OM (2014) nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ Microbiol 16:3211–3223

    Article  CAS  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 86:43–50

    Article  CAS  Google Scholar 

  • Mori A, Hojito M, Kondo H (2005) Effects of plant species on CH4 and N2O fluxes from a volcanic grassland soil in Nasu, Japan. Soil Sci Plant Nutrit 51:19–27

    Article  CAS  Google Scholar 

  • Morley N, Baggs EM (2010) Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem 42:1864–1871

    Article  CAS  Google Scholar 

  • Murray PJ, Hatch DJ, Dixon ER (2004) Denitrification potential in a grassland subsoil: effect of carbon substrates. Soil Biol Biochem 36:545–547

    Article  CAS  Google Scholar 

  • Nan G, Weishou S, Estefania C (2017) Nitrous oxide (N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils. Biol Fertil Soils 53:885–898

    Article  CAS  Google Scholar 

  • Naoki T (2009) Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. J Agricult Chem Soc Japan 73:1–8

    Google Scholar 

  • Nicole W, Velthof GL, Oene O (2004) Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale. FEMS Microbiol Ecol 47:13–18

    Article  CAS  Google Scholar 

  • Okereke GU (1993) Growth yield of denitrifiers using nitrous oxide as a terminal electron acceptor. World J Microbiol Biotechnol 9:59–62

    Article  CAS  Google Scholar 

  • Pauleta SR, Carepo M, Moura I (2019) Source and reduction of nitrous oxide. Coord Chem Rev 387:436–449

    Article  CAS  Google Scholar 

  • Payne W, Grant M, Shapleigh J (1982) Nitrogen oxide reduction in Wolinella succinogenes and Campylobacter species. J Bacteriol 152:915–918

    Article  CAS  Google Scholar 

  • Peng C, Gorelsky SI, Ghosh S (2004) N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site. Angewandte Chemie 43:4132–40

    Article  CAS  Google Scholar 

  • Philippot L, Griffiths B, Lemanceau P (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Change 4:801–805

    Article  CAS  Google Scholar 

  • Qin S, Yuan H, Hu C (2014) Determination of potential N2O-reductase activity in soil. Soil Biol Biochem 70:205–210

    Article  CAS  Google Scholar 

  • Qin S, Ding K, Clough TJ (2017) Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation. Biol Fertil Soils 53:723–727

    Article  CAS  Google Scholar 

  • Qin H, Xing X, Tang Y (2020) Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol Fertil Soils 56:53–67

    Article  CAS  Google Scholar 

  • Rathnayaka SC, Mankad NP (2021) Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coord Chem Rev 429:213718

    Article  CAS  Google Scholar 

  • Ravishankara AR, Da Niel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Reitner J, Thiel V (2011) Encyclopedia of geobiology. Encyclopedia of geobiology by Joachim Reitner and Volker Thiel. Springer, Berlin

    Chapter  Google Scholar 

  • Rong S, Qin H, O’Donnel AG (2015) Bacterial succession in paddy soils derived from different parent materials. J Soils Sediment 15:982–992

    Article  CAS  Google Scholar 

  • Rosenkranz P, Brüggemann N, Papen H (2005) N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3:673–702

    Google Scholar 

  • Sabyasachi G, Deepanjan M, Jain M (2002) Nitrous oxide emissions from kharif and rabi legumes grown on an alluvial soil. Biol Fertil Soils 35:473–478

    Article  CAS  Google Scholar 

  • Saggar S, Jha N, Deslippe J (2012) Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–195

    Article  CAS  Google Scholar 

  • Sameshima-Saito R, Chiba K, Minamisawa K (2004) New method of denitrification analysis of Bradyrhizobium field isolates by gas chromatographic determination of 15N-labeled N2. Appl Environ Microbiol 70:2886–2891

    Article  CAS  Google Scholar 

  • Sameshima-Saito R, Chiba K, Hirayama J (2006) Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous oxide reductase. Appl Environ Microbiol 72:2526–2532

    Article  CAS  Google Scholar 

  • Sánchez C, Minamisawa K (2019) Nitrogen cycling in soybean rhizosphere: sources and sinks of nitrous oxide (N2O). Front Microbiol 10:1943

    Article  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. PNAS 109:19709

    Article  CAS  Google Scholar 

  • Schalk-Otte S, Seviour RJ, Kuenen JG (2000) Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Res 34:2080–2088

    Article  CAS  Google Scholar 

  • Schlesinger WH (2013) An estimate of the global sink for nitrous oxide in soils. Global Change Biol 19:2929–2931

    Article  Google Scholar 

  • Schmidt I (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150:4107

    Article  CAS  Google Scholar 

  • Senbayram M, Chen R, Budai A (2012) N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric Ecosyst Environ 147:12

    Article  CAS  Google Scholar 

  • Senbayram M, Dittert K, Well R (2015) The effect of soil pH on N2O/(N2O+N2) product ratio of denitrification depends on soil NO3- concentration. Geophysical Research 17:15760

    Google Scholar 

  • Shestakov AF, Shilov AE (2001) On the coupled oxidation-reduction mechanism of molecular nitrogen fixation. Russ Chem Bull 50:2054–2059

    Article  CAS  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–281

    Article  CAS  Google Scholar 

  • Siljanen H, Welti N, Voigt C (2020) Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake. Plant Soil 454:121–138

    Article  CAS  Google Scholar 

  • Solomon S (2007) IPCC (2007): Climate Change The Physical Science Basis. Published for the Intergovernmental Panel on Climate Change 235

  • Speir TW, Kettles HA (1995) Aerobic emissions of N2O and N2 from soil cores: factors influencing production from 13N-labelled NO3 and NH4+. Soil Biol Biochem 27:1299–1306

    Article  CAS  Google Scholar 

  • Sullivan MJ, Gates AJ, Appia-Ayme C (2013) Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism. Proc Natl Acad Sci 110:19926–19931

    Article  CAS  Google Scholar 

  • Sun J, Gao T, Huang J (2015) Parental material and cultivation determine soil bacterial community structure and fertility. FEMS Microbiol Ecol 91:1–10

    Article  CAS  Google Scholar 

  • Takeshi Y, Naohiro Y, Eitaro W (1987) N2O reduction by Azotobacter vinelandii with emphasis on kinetic nitrogen isotope effects plant and cell physiology. Soil Biol Biochem 28:263–271

    Google Scholar 

  • Tang H, Shen J, Zhang YZ (2013) Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field. J Soil Water Conserv 27:240–246

    Google Scholar 

  • Tian H, Xu R, Canadell JG (2020) A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:248–256

    Article  CAS  Google Scholar 

  • Tortosa G, Pacheco PJ, Hidalgo-García A (2020) Copper modulates nitrous oxide emissions from soybean root nodules. Environ Exp Bot 180:104262

    Article  CAS  Google Scholar 

  • Toshikazu S, Shohei R, Masaaki H (2018) Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front Microbiol 9:697

    Article  Google Scholar 

  • Townsend-Small A, Prokopenko MG, Berelson WM (2014) Nitrous oxide cycling in the water column and sediments of the oxygen minimum zone, eastern subtropical North Pacific, Southern California, and Northern Mexico (23°N-34°N). J Geophys Res Oceans 119:3158–3170

    Article  CAS  Google Scholar 

  • Vasilaki V, Conca V, Frison N (2020) A knowledge discovery framework to predict the N2O emissions in the wastewater sector. Water Res 178:115799

    Article  CAS  Google Scholar 

  • Versteeg GF, Swaaij WV (1988) Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J Chem Eng Data 33:1

    Article  Google Scholar 

  • Vieten B, Conen F, Seth B (2008) The fate of N2O consumed in soils. Biogeosciences 5:129–132

    Article  CAS  Google Scholar 

  • Wang L, Sheng R, Yang H (2017a) Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil. Geoderma 286:64–72

    Article  CAS  Google Scholar 

  • Wang L, Xy Xing, Qin H (2017) N2O consumption ability of submerged paddy soil and the regulatory mechanism. Environ Sci 38:1633–1639

    Google Scholar 

  • Wang YQ, Bai R, Di HJ (2018) Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils. Front Microbiol 9:2566–2566

    Article  Google Scholar 

  • Wang L, Li B, Li Y (2021) Enhanced biological nitrogen removal under low dissolved oxygen in an anaerobic-anoxic-oxic system: kinetics, stoichiometry and microbial community. Chemosphere 263:128184

  • Warneke SR, Schipper LA, Bruesewitz DA (2011) Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol Eng 37:511–522

    Article  Google Scholar 

  • Warneke S, Macdonald BCT, Macdonald LM (2015) Abiotic dissolution and biological uptake of nitrous oxide in Mediterranean woodland and pasture soil. Soil Biol Biochem 82:62–64

    Article  CAS  Google Scholar 

  • Wei W, Isobe K, Shiratori Y (2014) N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biol Biochem 69:157–167

    Article  CAS  Google Scholar 

  • Wei D, Jian-qiang Z, Jia-zh D (2019) Nitrification denitrification and N2O production under saline and alkaline conditions. Environmental Science 040:3730–3737

    Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359

    Article  CAS  Google Scholar 

  • Well R, Butterbach-Bahl K (2013) A test of a field-based 15N-nitrous oxide pool dilution technique to measure gross N2O production in soil. Global Change Biol 19:3577

    Google Scholar 

  • Wen Y, Chen Z, Dannenmann M (2016) Disentangling gross N2O production and consumption in soil. Sci Rep 6:36517

    Article  Google Scholar 

  • Wen Y, Corre MD, Schrell W (2017) Gross N2O emission and gross N2O uptake in soils under temperate spruce and beech forests. Soil Biol Biochem 112:228–236

    Article  CAS  Google Scholar 

  • Wilks JC, Slonczewski JL (2007) pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J Bacteriol 189:5601–5607

    Article  CAS  Google Scholar 

  • Włodarczyk T, Stêpniewski W, Brzezińska M (2011) Various textured soil as nitrous oxide emitter and consumer. Int Agrophys 25:287–297

    Article  Google Scholar 

  • Wrage N, Velthof GL, Beusichem MLV (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Wu D, Dong W, Oenema O (2013) N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol Biochem 60:165–172

    Article  CAS  Google Scholar 

  • Xia ZB, Burger M, Doane T (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. PNAS 110:6328–6333

    Article  Google Scholar 

  • Xing X, Xu H, Zhao ZW (2019) The characteristics of the community structure of typical nitrous oxide-reducing denitrifiers in agricultural soils derived from different parent materials. Appl Soil Ecol 142:8–17

    Article  Google Scholar 

  • Yan X, Han Y, Li Q (2016) Impact of internal recycle ratio on nitrous oxide generation from anaerobic/anoxic/oxic biological nitrogen removal process. Biochem Eng J 106:11–18

    Article  CAS  Google Scholar 

  • Yang L, Cai Z (2005) The effect of growing soybean (Glycine max. L.) on N2O emission from soil. Soil Biol Biochem 37:1205–1209

    Article  CAS  Google Scholar 

  • Yang W, Teh YA, Silver W (2011) A test of a field-based 15N-nitrous oxide pool dilution technique to measure gross N2O production in soil. Global Change Biol 17:3577–3588

    Article  Google Scholar 

  • Yang YD, Hu YG, Wang ZM (2018) Variations of the nirS, nirK, and nosZ denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ Sci Pollut Res 25:14057–14067

    Article  CAS  Google Scholar 

  • Yano M, Toyoda S, Tokida T (2014) Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation. Soil Biol Biochem 70:66–78

    Article  CAS  Google Scholar 

  • Yu YJ, Zhang JB (2014) Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China. Biol Fertil Soils 50:105–113

  • Yoon S, Nissen S, Park D (2016) Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl Environ Microbiol 82:3793

    Article  CAS  Google Scholar 

  • Yoshinari T (1980) N2O reduction by Vibrio succinogenes. Appl Environ Microbiol 39:81–84

    Article  CAS  Google Scholar 

  • Yu YJ, Zhong WH, Zhang JB (2015) Parent materials have stronger effects than land use types on microbial biomass, activity and diversity in red soil in subtropical China. Pedobiologia 58:73–79

    Article  Google Scholar 

  • Zhang F, Huang J, Qiu X (1999) A new method identifying the binding site of N2 and N2O in nitrogenase. J Xiamen Univ 38:611–616

    CAS  Google Scholar 

  • Zhen H, Jian Z, Li S (2013) Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ Sci Pollut Res 20(2):1059–1069

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the following grants: the National Natural Science Foundation of China (41771330, 41907077, and 42177447) and of Fujian Province (2018J01058, 2019J01104, and 2019J01105); the Public Welfare Project of Fujian Province (2019R1025-1); Foundation of Fujian Academic of Agricultural Sciences (CXTD2021012-2, XTCXGC2021009, DEC2020-05, GJYS2019004, and AGP2018-9); Graduate Innovation Fund of Jilin University (101832020CX216); the Natural Science Foundation of Jilin Province (No. 20210101395JC); Science and Technology Development Plan Project of Jilin Province (Grant No. 20210203010SF).

Author information

Authors and Affiliations

Authors

Contributions

Hongshan Liu: writing—original draft. Yuefen Li: project administration and data curation. Baobao Pan: review and editing. Xiangzhou Zheng, Juhua Yu, and Hong Ding: literature search and analyses. Yushu Zhang: review and editing and funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuefen Li or Yushu Zhang.

Ethics declarations

Ethical approval.

We would like to declare that the work described was original research that has not been published previously, in whole or in part.

Consent to participate

All the authors listed consent to participate.

Consent for publication

All the authors listed have approved the manuscript that is enclosed.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Kitae Baek

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The process of soil N2O uptake and consumption is introduced.

• Driving factors are thoroughly detailed, especially nosZ genomes of microorganisms, soil moisture, O2, and N substrates.

• Isotopic 15N2O pool dilution is well recognized in N2O uptake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, Y., Pan, B. et al. Pathways of soil N2O uptake, consumption, and its driving factors: a review. Environ Sci Pollut Res 29, 30850–30864 (2022). https://doi.org/10.1007/s11356-022-18619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18619-y

Keywords

Navigation