Skip to main content
Log in

Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adadevoh JST, Ramsburg CA, Ford RM (2018) Chemotaxis increases the retention of bacteria in porous media with residual NAPL entrapment. Environ Sci Technol 52:7289–7295

    Article  CAS  Google Scholar 

  • Agarwal A, Liu Y (2015) Remediation technologies for oil-contaminated sediments. Mar Pollut Bull 101:483–490

    Article  CAS  Google Scholar 

  • Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, Fouke BW, Werth CJ (2019) Motility of Shewanella oneidensis MR-1 allows for nitrate reduction in the toxic region of a ciprofloxacin concentration gradient in a microfluidic reactor. Environ Sci Technol 53:2778–2787

    Article  CAS  Google Scholar 

  • Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology (reading, England) 149:37–46

    Article  CAS  Google Scholar 

  • Araujo LVd, Guimarães CR, Marquita RLdS, Santiago VMJ, de Souza MP, Nitschke M, Freire DMG (2016) Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178

    Article  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  Google Scholar 

  • Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416

    Article  Google Scholar 

  • Bardy SL, Briegel A, Rainville S, Krell T (2017) Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J Bacteriol 199:e00203-e217

    Article  CAS  Google Scholar 

  • Barros Á, Álvarez D, Velando A (2014) Long-term reproductive impairment in a seabird after the Prestige oil spill. Biol Lett 10:20131041

    Article  Google Scholar 

  • Ben Ayed H, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation 99:8–14

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2017) Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. J Hazard Mater 321:218–227

    Article  CAS  Google Scholar 

  • Bezza FA, Nkhalambayausi Chirwa EM (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644

    Article  CAS  Google Scholar 

  • Bhardwaj N, Bhaskarwar AN (2018) A review on sorbent devices for oil-spill control. Environ Pollut 243:1758–1771

    Article  CAS  Google Scholar 

  • Board TR, Council NR (2003) Oil in the Sea III: Inputs, Fates, and Effects. The National Academies Press, Washington, DC, p 277

    Google Scholar 

  • Bonnichsen L, Bygvraa Svenningsen N, Rybtke M, de Bruijn I, Raaijmakers JM, Tolker-Nielsen T, Nybroe O (2015) Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology (reading, England) 161:2289–2297

    Article  CAS  Google Scholar 

  • Bruheim P, Bredholt H, Eimhjellen K (1999) Effects of surfactant mixtures, including Corexit 9527, on Bacterial oxidation of acetate and alkanes in crude oil. Appl Environ Microbiol 65:1658–1661

    Article  CAS  Google Scholar 

  • Burchiel SW, Gao J (2005) Polycyclic aromatic hydrocarbons and the immune system. In: Vohr H-W (ed) Encyclopedia of Immunotoxicology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–7

    Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  Google Scholar 

  • Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3:357–357

    Article  Google Scholar 

  • Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370

    Article  CAS  Google Scholar 

  • Chen Y, Li C, Zhou Z, Wen J, You X, Mao Y, Lu C, Huo G, Jia X (2014) Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Appl Biochem Biotechnol 172:3433–3447

    Article  CAS  Google Scholar 

  • Chen W, Kong Y, Li J, Sun Y, Min J, Hu X (2020) Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int Biodeterior Biodegradation 154:105047

    Article  CAS  Google Scholar 

  • Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31

    Article  CAS  Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    Article  CAS  Google Scholar 

  • Cui CZ, Zeng C, Wan X, Chen D, Zhang JY, Shen P (2008) Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B. J Microbiol Biotechnol 18:63–66

    CAS  Google Scholar 

  • D’Aes J, Kieu NP, Léclère V, Tokarski C, Olorunleke FE, De Maeyer K, Jacques P, Höfte M, Ongena M (2014) To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ Microbiol 16:2282–2300

    Article  CAS  Google Scholar 

  • Davie-Martin CL, Stratton KG, Teeguarden JG, Waters KM, Simonich SLM (2017) Implications of bioremediation of polycyclic aromatic hydrocarbon-contaminated soils for human health and cancer risk. Environ Sci Technol 51:9458–9468

    Article  CAS  Google Scholar 

  • De Almeida DG, Soares Da Silva RdCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016): Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol. 7

  • de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  Google Scholar 

  • de Cássia FS, Silva R, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  Google Scholar 

  • Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VMM, Santisi S, Cappello S, Oliveira VM (2016) Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Mar Pollut Bull 107:107–117

    Article  CAS  Google Scholar 

  • Díaz E, Jiménez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442

    Article  Google Scholar 

  • Editorial, (2010) Oil spills: microorganisms to the rescue? Nat Rev Microbiol 8:462–462

    Article  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali Da, Banat IM (2015): Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front. Microbiol. 6

  • Esraa E, Shymaa E, Amro H, Nora F (2020) Comparative metagenomic screening of aromatic hydrocarbon degradation and secondary metabolite-producing genes in the Red Sea, the Suez Canal, and the Mediterranean Sea. OMICS 24:541–550

    Article  Google Scholar 

  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin SS (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551

    Article  Google Scholar 

  • Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB (2019): Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7

  • Fuentes S, Barra B, Caporaso JG, Seeger M, Löffler FE (2016) From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl Environ Microbiol 82:888–896

    Article  CAS  Google Scholar 

  • Fünfhaus A, Göbel J, Ebeling J, Knispel H, Garcia-Gonzalez E, Genersch E (2018) Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 8:8840

    Article  Google Scholar 

  • Gacesa R, Baranasic D, Starcevic A, Diminic J, Korlević M, Najdek M, Blažina M, Oršolić D, Kolesarić D, Long PF, Cullum J, Hranueli D, Orlic S, Zucko J (2018) Bioprospecting for genes encoding hydrocarbon-degrading enzymes from metagenomic samples isolated from Northern Adriatic Sea Sediments. Food Technol Biotechnol 56:270–277

    Article  CAS  Google Scholar 

  • Galambos D, Anderson RE, Reveillaud J, Huber JA (2019) Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ Microbiol 21:4395–4410

    Article  CAS  Google Scholar 

  • George S, Jayachandran K (2018): Biosurfactants from Processed Wastes. In: Singhania RR, Agarwal RA, Kumar RP , Sukumaran RK (Editors), Waste to Wealth. Springer Singapore, Singapore, pp. 45–58

  • Geys R, Soetaert W, Van Bogaert I (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  Google Scholar 

  • Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328

    Article  CAS  Google Scholar 

  • Gottfried A, Singhal N, Elliot R, Swift S (2010) The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Appl Microbiol Biotechnol 86:1563–1571

    Article  CAS  Google Scholar 

  • Götze S, Herbst-Irmer R, Klapper M, Görls H, Schneider KRA, Barnett R, Burks T, Neu U, Stallforth P (2017) Structure, biosynthesis, and biological activity of the cyclic lipopeptide anikasin. ACS Chem Biol 12:2498–2502

    Article  Google Scholar 

  • Graham WM, Condon RH, Carmichael RH, D’Ambra I, Patterson HK, Linn LJ, Hernandez FJ Jr (2010) Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environmental Research Letters 5:045301

    Article  Google Scholar 

  • Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34:667–675

    Article  Google Scholar 

  • Gurung JP, Gel M, Baker MAB (2020) Microfluidic techniques for separation of bacterial cells via taxis. Microbial Cell 7:66–79

    Article  CAS  Google Scholar 

  • Harshey RM (2003) Bacterial Motility on a Surface: Many Ways to a Common Goal. Annu Rev Microbiol 57:249–273

    Article  CAS  Google Scholar 

  • Hazen TC et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Henkels MD, Kidarsa TA, Shaffer BT, Goebel NC, Burlinson P, Mavrodi DV, Bentley MA, Rangel LI, Davis EW 2nd, Thomashow LS, Zabriskie TM, Preston GM, Loper JE (2014) Pseudomonas protegens Pf-5 causes discoloration and pitting of mushroom caps due to the production of antifungal metabolites. Mol Plant Microbe Interact 27:733–746

    Article  CAS  Google Scholar 

  • Hu B, Wang M, Geng S, Wen L, Wu M, Nie Y, Tang Y-Q, Wu X-L (2020) Metabolic exchange with non-alkane-consuming Pseudomonas stutzeri SLG510A3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol 86:e02931-e3019

    Article  CAS  Google Scholar 

  • Hua F, Wang HQ (2014) Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnology, Biotechnological Equipment 28:165–175

    Article  CAS  Google Scholar 

  • Huang Z, Ni B, Jiang C-Y, Wu Y-F, He Y-Z, Parales RE, Liu S-J (2016) Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni. Mol Microbiol 101:224–237

    Article  CAS  Google Scholar 

  • Huang Z, Wang Y-H, Zhu H-Z, Andrianova EP, Jiang C-Y, Li D, Ma L, Feng J, Liu Z-P, Xiang H, Zhulin IB, Liu S-J (2019): Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. mBio 10, e02876–18

  • Husain S (2008) Effect of surfactants on pyrene degradation by Pseudomonas fluorescens 29L. World J Microbiol Biotechnol 24:2411

    Article  CAS  Google Scholar 

  • Ibrar M, Zhang H (2020) Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. Sci Total Environ 714:136400

    Article  CAS  Google Scholar 

  • Idowu O, Semple KT, Ramadass K, O’Connor W, Hansbro P, Thavamani P (2019) Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int 123:543–557

    Article  CAS  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  Google Scholar 

  • Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 275:102061

    Article  CAS  Google Scholar 

  • Janbandhu A, Fulekar MH (2011) Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 187:333–340

    Article  CAS  Google Scholar 

  • Jiang B, Song Y, Liu Z, Huang WE, Li G, Deng S, Xing Y, Zhang D (2020): Whole-cell bioreporters for evaluating petroleum hydrocarbon contamination. Crit. Rev. Environ. Sci. Technol., 1–51

  • Jimenez-Sanchez C, Wick LY, Ortega-Calvo J-J (2018) Impact of chemoeffectors on bacterial motility, transport, and contaminant degradation in sand-filled percolation columns. Environ Sci Technol 52:10673–10679

    Article  CAS  Google Scholar 

  • Jimoh AA, Lin J (2019): Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 184

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Joye S, Kleindienst S, Peña-Montenegro TD (2018) SnapShot: microbial hydrocarbon bioremediation. Cell 172:1336-1336.e1

    Article  CAS  Google Scholar 

  • Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76

    Article  CAS  Google Scholar 

  • Kampara M, Thullner M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 2. Experimental Evidence Environ Sci Technol 42:6552–6558

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC1 in a benzo [a] pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833

    Article  CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  CAS  Google Scholar 

  • Kim S-J, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  CAS  Google Scholar 

  • King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci 7:377–401

    Article  CAS  Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015a) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13:388–396

    Article  CAS  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112:14900–14905

    Article  CAS  Google Scholar 

  • Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ Sci Technol 45:1298–1306

    Article  CAS  Google Scholar 

  • Kujawinski EB, Reddy CM, Rodgers RP, Thrash JC, Valentine DL, White HK (2020): The first decade of scientific insights from the Deepwater Horizon oil release. Nature Reviews Earth & Environment

  • Kumari R, Tecon R, Beggah S, Rutler R, Arey JS, van der Meer JR (2011) Development of bioreporter assays for the detection of bioavailability of long-chain alkanes based on the marine bacterium Alcanivorax borkumensis strain SK2. Environ Microbiol 13:2808–2819

    Article  CAS  Google Scholar 

  • Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresour Technol 254:174–179

    Article  CAS  Google Scholar 

  • Law AMJ, Aitken MD (2003) Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 69:5968–5973

    Article  CAS  Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  Google Scholar 

  • Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Löffler FE, O’Malley MA, García Martín H, Pfleger BF, Raskin L, Venturelli OS, Weissbrodt DG, Noguera DR, McMahon KD (2019) Common principles and best practices for engineering microbiomes. Nat Rev Microbiol 17:725–741

    Article  CAS  Google Scholar 

  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483

    Article  Google Scholar 

  • Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT (2002) Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. Strain JS765. Appl Environ Microbiol 68:634–641

    Article  CAS  Google Scholar 

  • Li J, Wang Y, Zhou W, Chen W, Deng M, Zhou S (2020) Characterization of a new biosurfactant produced by an effective pyrene-degrading Achromobacter species strain AC15. Int Biodeterior Biodegradation 152:104959

    Article  CAS  Google Scholar 

  • Liang C, Huang Y, Wang H (2019) pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 85:e02399-e2418

    Article  CAS  Google Scholar 

  • Lindstrom JE, Braddock JF (2002) Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500. Mar Pollut Bull 44:739–747

    Article  CAS  Google Scholar 

  • Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115:796–814

    Article  CAS  Google Scholar 

  • Liu K, Sun Y, Cao M, Wang J, Lu JR, Xu H (2020) Rational design, properties, and applications of biosurfactants: a short review of recent advances. Curr Opin Colloid Interface Sci 45:57–67

    Article  CAS  Google Scholar 

  • Ma Z, Wang N, Hu J, Wang S (2012) Isolation and characterization of a new iturinic lipopeptide, mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A. J Antibiot 65:317

    Article  CAS  Google Scholar 

  • Ma Y-L, Lu W, Wan L-L, Luo N (2015) Elucidation of fluoranthene degradative characteristics in a newly isolated achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175:1294–1305

    Article  CAS  Google Scholar 

  • Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry: an International Journal 22:2280–2292

    Article  CAS  Google Scholar 

  • Marozava S, Meyer AH, Pérez-de-Mora A, Gharasoo M, Zhuo L, Wang H, Cirpka OA, Meckenstock RU, Elsner M (2019) Mass transfer limitation during slow anaerobic biodegradation of 2-methylnaphthalene. Environ Sci Technol 53:9481–9490

    Article  CAS  Google Scholar 

  • Marx RB, Aitken MD (2000) Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34:3379–3383

    Article  CAS  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman H-YN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727

    Article  CAS  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosystems 8:10

    Article  Google Scholar 

  • Meng L, Li W, Bao M, Sun P (2019) Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’ for oil contaminated seawater bioremediation. Water Res 153:160–168

    Article  CAS  Google Scholar 

  • Molina L, Duque E, Gómez MJ, Krell T, Lacal J, García-Puente A, García V, Matilla MA, Ramos J-L, Segura A (2011) The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol 13:2315–2327

    Article  CAS  Google Scholar 

  • Moro GV, Almeida RT, Napp AP, Porto C, Pilau EJ, Lüdtke DS, Moro AV, Vainstein MH (2018) Identification and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry characterization of biosurfactants, including a new surfactin, isolated from oil-contaminated environments. Microb Biotechnol 11:759–769

    Article  CAS  Google Scholar 

  • Morya VK, Changha A, Sanggui J, Eun-Ki K (2013) Medicinal and cosmetic potentials of sophorolipids. Mini-Rev Med Chem 13:1761–1768

    Article  CAS  Google Scholar 

  • Ní Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72:4078–4087

    Article  Google Scholar 

  • Owsianiak M, Szulc A, Chrzanowski Ł, Cyplik P, Bogacki M, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Appl Microbiol Biotechnol 84:545–553

    Article  CAS  Google Scholar 

  • Pan T, Deng T, Zeng X, Dong W, Yu S (2016) Extractive biodegradation and bioavailability assessment of phenanthrene in the cloud point system by Sphingomonas polyaromaticivorans. Appl Microbiol Biotechnol 100:431–437

    Article  CAS  Google Scholar 

  • Parab V, Phadke M (2020) Co-biodegradation studies of naphthalene and phenanthrene using bacterial consortium. Journal of Environmental Science and Health, Part A 55:912–924

    Article  CAS  Google Scholar 

  • Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:1641–1649

    Article  CAS  Google Scholar 

  • Passow U, Overton EB (2021) The complexity of spills: the fate of the deepwater horizon oil. Ann Rev Mar Sci 13:109–136

    Article  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2016): Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front. Microbiol. 7

  • Pei X-H, Zhan X-H, Wang S-M, Lin Y-S, Zhou L-X (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    Article  CAS  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the exxon valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  Google Scholar 

  • Phulpoto IA, Hu B, Wang Y, Ndayisenga F, Li J, Yu Z (2021) Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. Sci Total Environ 751:141720

    Article  CAS  Google Scholar 

  • Place BJ, Perkins MJ, Sinclair E, Barsamian AL, Blakemore PR, Field JA (2016) Trace analysis of surfactants in Corexit oil dispersant formulations and seawater. Deep Sea Res Part II 129:273–281

    Article  CAS  Google Scholar 

  • Poudel S, Giannone RJ, Farmer AT, Campagna SR, Bible AN, Morrell-Falvey JL, Elkins JG, Hettich RL (2019) Integrated Proteomics and lipidomics reveal that the swarming motility of Paenibacillus polymyxa is characterized by phospholipid modification, surfactant deployment, and flagellar specialization relative to swimming motility. Front Microbiol 10:2594

    Article  Google Scholar 

  • Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR (2019) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17:284–294

    Article  CAS  Google Scholar 

  • Rapp KM, Jenkins JP, Betenbaugh MJ (2020) Partners for life: building microbial consortia for the future. Curr Opin Biotechnol 66:292–300

    Article  CAS  Google Scholar 

  • Rodrigues LR (2015) Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 449:304–316

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  Google Scholar 

  • Rodrigues A, Nogueira R, Melo LF, Brito AG (2013) Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation. Int Biodeterior Biodegradation 83:48–55

    Article  CAS  Google Scholar 

  • Roggo C, Clerc EE, Hadadi N, Carraro N, Stocker R, van der Meer JR (2018) Heterologous expression of pseudomonas putida methylaccepting chemotaxis proteins yields Escherichia coli cells chemotactic to aromatic compounds. Appl Environ Microbiol 84:e01362-e1418

    Article  CAS  Google Scholar 

  • Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613

    Article  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R (2014) Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8:398–408

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: Assays in a pilot plant. Sci Total Environ 445–446:347–355

    Article  Google Scholar 

  • Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 20:7367–7376

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  • Sun S, Wang H, Yan K, Lou J, Ding J, Snyder SA, Wu L, Xu J (2021) Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation. J Hazard Mater 403:123825

    Article  CAS  Google Scholar 

  • Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC, Conmy R, Santo Domingo JW (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microbiol 83:e03462-e3516

    Article  CAS  Google Scholar 

  • Tram G, Klare WP, Cain JA, Mourad B, Cordwell SJ, Day CJ, Korolik V (2020) Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach. Sci Rep 10:6829

    Article  CAS  Google Scholar 

  • Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, Lee K, Greer CW (2017) Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria. ISME J 11:2793–2808

    Article  CAS  Google Scholar 

  • Tremblay J, Fortin N, Elias M, Wasserscheid J, King TL, Lee K, Greer CW (2019) Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environ Microbiol 21:2307–2319

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  Google Scholar 

  • Uttlová P, Pinkas D, Bechyňková O, Fišer R, Svobodová J, Seydlová G (2016) Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim Biophys Acta 1858:2965–2971

    Article  Google Scholar 

  • van der Meer JR (2006) Environmental pollution promotes selection of microbial degradation pathways. Front Ecol Environ 4:35–42

    Article  Google Scholar 

  • Vecino X, Cruz JM, Moldes AB, Rodrigues LR (2017) Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 37:911–923

    Article  CAS  Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102

    Article  CAS  Google Scholar 

  • Wammer KH, Peters CA (2005) Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study. Environ Sci Technol 39:2571–2578

    Article  CAS  Google Scholar 

  • Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M, Muangchinda C, Morita T, Suzuki-Minakuchi C, Inoue K, Nojiri H, Pinyakong O (2018) Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater 342:561–570

    Article  CAS  Google Scholar 

  • Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, Wu X-L (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102:7755–7761

    Article  CAS  Google Scholar 

  • Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80:6724–6732

    Article  Google Scholar 

  • Wang Y-H, Huang Z, Liu S-J (2019): Chemotaxis towards aromatic compounds: insights from Comamonas testosteroni. Int. J. Mol. Sci. 20

  • Wei ST-S, Wu Y-W, Lee T-H, Huang Y-S, Yang C-Y, Chen Y-L, Chiang Y-R (2018): Microbial functional responses to cholesterol catabolism in denitrifying sludge. mSystems 3, e00113–18

  • Whang L-M, Liu P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

  • Wilhelm RC, Hanson BT, Chandra S, Madsen E (2018) Community dynamics and functional characteristics of naphthalene-degrading populations in contaminated surface sediments and hypoxic/anoxic groundwater. Environ Microbiol 20:3543–3559

    Article  CAS  Google Scholar 

  • Xu C, Yu H (2020): Insights into constructing a stable and efficient microbial consortium. Chin. J. Chem. Eng.

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  Google Scholar 

  • Yang W, Briegel A (2020) Diversity of bacterial chemosensory arrays. Trends Microbiol 28:68–80

    Article  CAS  Google Scholar 

  • Yin F, Hayworth JS, Clement TP (2015) A tale of two recent spills—comparison of 2014 galveston bay and 2010 deepwater horizon oil spill residues. PLoS One 10:e0118098

    Article  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  CAS  Google Scholar 

  • Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Sci Total Environ 613–614:1140–1153

    Article  Google Scholar 

  • Zahed MA, Aziz HA, Isa MH, Mohajeri L (2010) Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bull Environ Contam Toxicol 84:438–442

    Article  CAS  Google Scholar 

  • Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G (2017) Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review. Biotechnol Adv 35:490–504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MI and FH performed the study conception and design, MI carried out the manuscript writing. SK and XY contributed to data collection and revising the manuscript. FH and XY provided critical feedback and helped shape the manuscript.

Corresponding author

Correspondence to Xuewei Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Robert Duran.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrar, M., Khan, S., Hasan, F. et al. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. Environ Sci Pollut Res 29, 24391–24410 (2022). https://doi.org/10.1007/s11356-022-18492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18492-9

Keywords

Navigation