Skip to main content

Advertisement

Log in

Current understandings and perspectives of petroleum hydrocarbons in Alzheimer’s disease and Parkinson’s disease: a global concern

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aarsland D, Ballard C, Walker Z, et al (2009) Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol 8:613–618

  • Aasly JO, Shi M, Sossi V et al (2012) Cerebrospinal fluid amyloid β and tau in LRRK2 mutation carriers. Neurology 78:55–61

    Article  CAS  Google Scholar 

  • Abeliovich A (2010) Parkinson’s disease: Mitochondrial damage control. Nature 463:744–745

  • Alleyne T, Mohan N, Adogwa A (2012) Elevated ferric, calcium and magnesium ions in the brain induce protein aggregation in brain mitochondria. West Indian Med J 61:122–127

    CAS  Google Scholar 

  • Al-Mousa F, Michelangeli F (2012) Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells. PLoS One 7:e33059

    Article  CAS  Google Scholar 

  • Androutsopoulos VP, Hernandez AF, Liesivuori J, Tsatsakis AM (2013) A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 307:89–94

  • Annicchiarico R, Federici A, Pettenati C, Caltagirone C (2007) Rivastigmine in Alzheimer’s disease: cognitive function and quality of life. Ther Clin Risk Manag 3:1113–1123

    CAS  Google Scholar 

  • Aygun D (2004) Diagnosis in an acute organophosphate poisoning: report of three interesting cases and review of the literature. Eur J Emerg Med 11:55–58

  • Barse AV, Chakrabarti T, Ghosh TK et al (2007) Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pestic Biochem Physiol 88:36–42

    Article  CAS  Google Scholar 

  • Belfiore M, Cariati I, Matteucci A et al (2019) Calcitonin native prefibrillar oligomers but not monomers induce membrane damage that triggers NMDA-mediated Ca2+-influx. LTP Impairment and Neurotoxicity Sci Rep 9:5144

    Google Scholar 

  • Bemis JC, Seegal RF (2004) PCB-induced inhibition of the vesicular monoamine transporter predicts reductions in synaptosomal dopamine content. Toxicol Sci 80:288–295

  • Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50

  • Blanch M, Mosquera JL, Ansoleaga B et al (2016) Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am J Pathol 186:385–397

    Article  CAS  Google Scholar 

  • Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32:506–516

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573

    Article  CAS  Google Scholar 

  • Borrell B (2010) Toxicology: the big test for bisphenol A. Nature 464:1122–1124

    Article  CAS  Google Scholar 

  • Brendel M, Kleinberger G, Probst F et al (2017) Increase of TREM2 during aging of an Alzheimer’s disease mouse model is paralleled by microglial activation and amyloidosis. Front Aging Neurosci 9:8

    Article  Google Scholar 

  • Brinkmann V, Ale-Agha N, Haendeler J, Ventura N (2019) The aryl hydrocarbon receptor (AhR) in the aging process: another puzzling role for this highly conserved transcription factor. Front Physiol 10:1561

    Article  Google Scholar 

  • Cacciatore I, Baldassarre L, Fornasari E et al (2012) Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid Med Cell Longev 2012:240146

    Article  Google Scholar 

  • Calderón-Segura ME, Gómez-Arroyo S, Villalobos-Pietrini R et al (2012) Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news. J Toxicol 2012:612647

    Article  Google Scholar 

  • Cartier AE, Ubhi K, Spencer B et al (2012) Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy. PLoS One 7:e34713

    Article  CAS  Google Scholar 

  • Cataldo AM, Petanceska S, Terio NB et al (2004) Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 25:1263–1272

    Article  CAS  Google Scholar 

  • Caudle WM, Richardson JR, Delea KC, et al (2006) Polychlorinated biphenyl-induced reduction of dopamine transporter expression as a precursor to Parkinson’s disease-associated dopamine toxicity. Toxicol Sci 92:490–499

  • Cenini G, Lloret A, Cascella R (2019) Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev 2019:2105607

    Article  Google Scholar 

  • Center for Drug Evaluation, Research (2021) Aducanumab (marketed as Aduhelm) information. In: Fda.gov. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/aducanumab-marketed-aduhelm-information. Accessed 15 Jun 2021

  • Chatterjee S, Mudher A (2018) Alzheimer’s disease and type 2 diabetes: a critical assessment of the shared pathological traits. Front Neurosci 12.

  • Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114

    Article  CAS  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci 27:8138–8148

  • Chavan H, Krishnamurthy P (2012) Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem 287:32054–32068

    Article  CAS  Google Scholar 

  • Chen N-N, Luo D-J, Yao X-Q, et al (2012) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimers Dis 30:585–594

  • Chinta SJ, Woods G, Rane A et al (2015) Cellular senescence and the aging brain. Exp Gerontol 68:3–7

    Article  CAS  Google Scholar 

  • Choudhary M, Malek G (2020) The aryl hydrocarbon receptor: a mediator and potential therapeutic target for ocular and non-ocular neurodegenerative diseases. Int J Mol Sci 21:6777

    Article  CAS  Google Scholar 

  • Ciccone S, Maiani E, Bellusci G et al (2013) Parkinson’s disease: a complex interplay of mitochondrial DNA alterations and oxidative stress. Int J Mol Sci 14:2388–2409

    Article  CAS  Google Scholar 

  • Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185

    Article  Google Scholar 

  • Cole NB, Murphy DD, Grider T et al (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277:6344–6352

    Article  CAS  Google Scholar 

  • Coskun P, Wyrembak J, Schriner SE et al (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820:553–564

    Article  CAS  Google Scholar 

  • Coskuner-Weber O, Uversky VN (2018) Insights into the molecular mechanisms of Alzheimer’s and Parkinson’s diseases with molecular simulations: understanding the roles of artificial and pathological missense mutations in intrinsically disordered proteins related to pathology. Int J Mol Sci 19.

  • Costa LG, Aschner M, Vitalone A et al (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110

    Article  CAS  Google Scholar 

  • Colosio C, Tiramani M, Maroni M (2003) Neurobehavioral effects of pesticides: state of the art. Neurotoxicology 24:577–591

  • Cremades N, Dobson CM (2018) The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 109:178–190

    Article  CAS  Google Scholar 

  • Cui M, Aras R, Christian WV, et al (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci USA 106:8043–8048

  • Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections: Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine. Br J Pharmacol 167:324–352

    Article  CAS  Google Scholar 

  • Davidsen N, Lauvås AJ, Myhre O et al (2021) Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 100:17–34

    Article  CAS  Google Scholar 

  • Davis AA, Leyns CEG, Holtzman DM (2018) Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol 34:545–568

    Article  CAS  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  Google Scholar 

  • Di Scala C, Yahi N, Boutemeur S et al (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein. Sci Rep 6:28781

    Article  Google Scholar 

  • Dufty BM, Warner LR, Hou ST et al (2007) Calpain-cleavage of α-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170(5):1725–38

    Article  CAS  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    Article  Google Scholar 

  • Duplan E, Giaime E, Viotti J et al (2013) ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J Cell Sci 126:2124–2133

    CAS  Google Scholar 

  • Edwards FL, Yedjou CG, Tchounwou PB (2013) Involvement of oxidative stress in methyl parathion and parathioninduced toxicity and genotoxicity to human liver carcinoma (HepG2) cells. Environ Toxicol 28:342–348

  • Eldufani J, Blaise G (2019) The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: a review of recent clinical applications. Alzheimers Dement (n y) 5:175–183

    Article  Google Scholar 

  • Eriksson P, Viberg H, Jakobsson E et al (2002) A brominated flame retardant, 2,2’,4,4’,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103

    Article  CAS  Google Scholar 

  • Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 4:120

    Article  CAS  Google Scholar 

  • Farlow M, Arnold SE, van Dyck CH et al (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271

    Article  CAS  Google Scholar 

  • Federoff HJ (2009) Nur(R1)turing a notion on the etiopathogenesis of Parkinson’s disease. Neurotox Res 16:261–270

    Article  CAS  Google Scholar 

  • Ferreira M, Moradas-Ferreira P, Reis-Henriques MA (2005) Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichthys flesus), from a polluted site in River Douro Estuary, Portugal. Aquat Toxicol 71:39–48

    Article  CAS  Google Scholar 

  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115

    Article  CAS  Google Scholar 

  • Fonnum F, Mariussen E, Reistad T (2006) Molecular mechanisms involved in the toxic effects of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs). J Toxicol Environ Health Part A 69:21–35

  • Fortin DL, Troyer MD, Nakamura K et al (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24:6715–6723

    Article  CAS  Google Scholar 

  • Frost JL, Liu B, Kleinschmidt M et al (2012) Passive immunization against pyroglutamate-3 amyloid-ß reduces plaque burden in Alzheimer-like transgenic mice: a pilot study. Neurodegener Dis 10:265–270

    Article  CAS  Google Scholar 

  • Gandhi J, Antonelli AC, Afridi A et al (2019) Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 30:339–358

    Article  Google Scholar 

  • Genc S, Zadeoglulari Z, Fuss SH, Genc K (2012) The adverse effects of air pollution on the nervous system. J Toxicol 2012:782462

    Article  Google Scholar 

  • Gerson JE, Farmer KM, Henson N, Castillo-Carranza DL, Carretero Murillo M, Sengupta U, Barrett A, Kayed R (2018) Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener 13:13

    Article  Google Scholar 

  • Ghedira J, Jebali J, Bouraoui Z et al (2009) Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas. J Environ Sci (china) 21:1467–1472

    Article  CAS  Google Scholar 

  • Giasson BI, Forman MS, Higuchi M et al (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640

    Article  CAS  Google Scholar 

  • Gillardon F, Schmid R, Draheim H (2012) Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 208:41–48

    Article  CAS  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    Article  CAS  Google Scholar 

  • Gohlke JM, Stockton PS, Sieber S et al (2009) AhR-mediated gene expression in the developing mouse telencephalon. Reprod Toxicol 28:321–328

    Article  CAS  Google Scholar 

  • González-Barbosa E, García-Aguilar R, Vega L et al (2019) Parkin is transcriptionally regulated by the aryl hydrocarbon receptor: impact on α-synuclein protein levels. Biochem Pharmacol 168:429–437

    Article  Google Scholar 

  • Grandjean P, Harari R, Barr DB, Debes F (2006) Pesticide exposure and stunting as independent predictors of neurobehavioral deficits in Ecuadorian school children. Pediatrics 117:e546–56

  • Griciuc A, Serrano-Pozo A, Parrado AR et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643

    Article  CAS  Google Scholar 

  • Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014

    CAS  Google Scholar 

  • Guo J, Yang G, He Y et al (2021) Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol Neurobiol 41:377–393

    Article  CAS  Google Scholar 

  • Guo Y, Wei X, Yan H et al (2019) TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J 33:12164–12174

    Article  CAS  Google Scholar 

  • Hajszan T, Leranth C (2010) Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 31:519–530

    Article  CAS  Google Scholar 

  • Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Article  Google Scholar 

  • Harilal S, Jose J, Parambi DGT, Kumar R, Mathew GE, Uddin MS, Kim H, Mathew B (2019) Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 71:1370–1383

    Article  CAS  Google Scholar 

  • Harilal S, Jose J, Parambi DGT, Kumar R, Unnikrishnan MK, Uddin MS, Mathew GE, Pratap R, Marathakam A, Mathew B (2020) Revisiting the blood-brain barrier: a hard nut to crack in the transportation of drug molecules. Brain Res Bull 160:121–140

    Article  CAS  Google Scholar 

  • Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    Article  Google Scholar 

  • Hartfield EM, Fernandes HJR, Vowles J et al (2012) Cellular reprogramming: a new approach to modelling Parkinson’s disease. Biochem Soc Trans 40:1152–1157

    Article  CAS  Google Scholar 

  • Hartmann T, Bieger SC, Brühl B et al (1997) Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat Med 3:1016–1020

    Article  CAS  Google Scholar 

  • Hauser R, Williams P, Altshul L, Calafat AM (2005) Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ Health Perspect 113:425–430

    Article  CAS  Google Scholar 

  • Hayden KM, Norton MC, Darcey D, et al (2010) Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology 74:1524–1530

  • Hernandez-Zimbron LF, Luna-Muñoz J, Mena R et al (2012) Amyloid-β peptide binds to cytochrome C oxidase subunit 1. PLoS One 7:e42344

    Article  CAS  Google Scholar 

  • Hong S, Ostaszewski BL, Yang T et al (2014) Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82:308–319

    Article  CAS  Google Scholar 

  • Hopperton KE, Mohammad D, Trépanier MO et al (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23:177–198

    Article  CAS  Google Scholar 

  • Horowitz MP, Greenamyre JT (2010) Gene-environment interactions in Parkinson’s disease: the importance of animal modeling. Clin Pharmacol Ther 88:467–474

    Article  CAS  Google Scholar 

  • Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 122:512–525

  • Huang Q, Figueiredo-Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15:1292–1311

    Article  CAS  Google Scholar 

  • Huang Z, Yan Q, Wang Y et al (2020) Role of mitochondrial dysfunction in the pathology of amyloid-β. J Alzheimers Dis 78:505–514

    Article  CAS  Google Scholar 

  • Ihara D, Fukuchi M, Honma D, et al (2012) Deltamethrin, a type II pyrethroid insecticide, has neurotrophic effects on neurons with continuous activation of the Bdnf promoter. Neuropharmacology 62:1091–1098

  • Isibor PO, Akeredolu E, Samuel OB et al (2021) Comparative Bioaccumulation of PAH and BTEX in Malapterurus electricus (Siluriformes: Malapteruridae) and its enteric parasite, Electrotaenia malopteruri sampled from Lekki Lagoon, Lagos, Nigeria. Braz J Biol 81:1081–1094

    Article  CAS  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  CAS  Google Scholar 

  • Jaeger C, Tischkau SA (2016) Role of aryl hydrocarbon receptor in circadian clock disruption and metabolic dysfunction. Environ Health Insights 10:133–141

    Article  Google Scholar 

  • Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    Article  CAS  Google Scholar 

  • Jiang L-F, Yao T-M, Zhu Z-L, et al (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774:1414–1421

  • Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76:569–581

    Article  CAS  Google Scholar 

  • Jonsson B Risk assessment on butylphenol, octylphenol and nonylphenol, and estimated human exposure of alkylphenols from Swedish fish. In: www.uu.se.https://www.uu.se/digitalAssets/177/c_177024-l_3-k_jonsson-beatrice-report.pdf. Accessed 28 Nov 2021

  • Juricek L, Coumoul X (2018) The aryl hydrocarbon receptor and the nervous system. Int J Mol Sci 19 (9):2504

  • Khan A, Ahsan A, Farooq MA, et al (2021) Role of polycyclic aromatic hydrocarbons as EDCs in metabolic disorders. In: Emerging Contaminants and Associated Treatment Technologies. Springer International Publishing, Cham, pp 323–341

  • Khan AU, Akram M, Daniyal M, Zainab R (2019) Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 129:55–93

    Article  Google Scholar 

  • Kim DS, Choi H-I, Wang Y et al (2017) A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 26:1560–1571

    Article  Google Scholar 

  • Kim SH, Knight EM, Saunders EL, et al (2012) Rapid doubling of Alzheimer’s amyloid-β40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Res 1:70

  • Kimura-Kuroda J, Komuta Y, Kuroda Y et al (2012) Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One 7:e32432

    Article  CAS  Google Scholar 

  • Kodavanti PR, Ward TR, Derr-Yellin EC, et al (1998) Congener-specific distribution of polychlorinated biphenyls in brain regions, blood, liver, and fat of adult rats following repeated exposure to Aroclor 1254. Toxicol Appl Pharmacol 153:199–210

  • Kodavanti PRS, Ward TR (2005) Differential effects of commercial polybrominated diphenyl ether and polychlorinated biphenyl mixtures on intracellular signaling in rat brain in vitro. Toxicol Sci 85:952–962

  • Koslowski S, Latapy C, Auvray P et al (2020) Long-term fipronil treatment induces hyperactivity in female mice. Int J Environ Res Public Health 17:1579

    Article  CAS  Google Scholar 

  • Krasemann S, Madore C, Cialic R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566-581.e9

    Article  CAS  Google Scholar 

  • Kukull WA, Larson EB, Bowen JD, et al (1995) Solvent exposure as a risk factor for Alzheimer’s disease: a casecontrol study. Am J Epidemiol 141:1059–71; discussion 1072–9

  • Kumar H, Lim H-W, More SV et al (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504

    Article  CAS  Google Scholar 

  • Kwon HS, Koh S-H (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9:42

    Article  Google Scholar 

  • Laetz CA, Baldwin DH, Collier TK, et al (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117:348–353

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

  • Lashuel HA, Hartley DM, Petre BM et al (2003) Mixtures of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795–808

    Article  CAS  Google Scholar 

  • Latchney SE, Hein AM, O’Banion MK et al (2013) Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem 125:430–445

    Article  CAS  Google Scholar 

  • Lee Y-H, Lin C-H, Hsu P-C et al (2015) Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia: AhR in LPS-induced microglial activation. Glia 63:1138–1154

    Article  Google Scholar 

  • Lee S-J, Mulay P, Diebolt-Brown B, et al (2010) Acute illnesses associated with exposure to fipronil--surveillance data from 11 states in the United States, 2001-2007. Clin Toxicol (Phila) 48:737–744

  • Lenzi P, Marongiu R, Falleni A et al (2012) A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch Ital Biol 150:194–217

    CAS  Google Scholar 

  • Leranth C, Hajszan T, Szigeti-Buck K et al (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci U S A 105:14187–14191

    Article  CAS  Google Scholar 

  • Li J, Zheng M, Shimoni O et al (2021) Development of novel therapeutics targeting the blood-brain barrier: from barrier to carrier. Adv Sci (Weinh) 8:e2101090

    Article  Google Scholar 

  • Limon A, Reyes-Ruiz JM, Miledi R (2012) Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A 109:10071–10076

  • Lin C-H, Chen M-L, Chen GS et al (2011) Novel variant Pro143Ala in HTRA2 contributes to Parkinson’s disease by inducing hyperphosphorylation of HTRA2 protein in mitochondria. Hum Genet 130:817–827

    Article  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  Google Scholar 

  • Lin T-K, Cheng C-H, Chen S-D et al (2012a) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13:8722–8739

    Article  CAS  Google Scholar 

  • Lin X, Parisiadou L, Sgobio C et al (2012b) Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32:9248–9264

    Article  CAS  Google Scholar 

  • Liu B, Hong J-S (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  CAS  Google Scholar 

  • Liu Y, Liu X-J, Sun D (2009) Ion transporters and ischemic mitochondrial dysfunction. Cell Adh Migr 3:94–98

    Article  Google Scholar 

  • Luk KC, Lee VM-Y (2014) Modeling Lewy pathology propagation in Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S85–S87

    Article  Google Scholar 

  • Luo K, Stepanov I, Hecht SS (2019) Chemical biomarkers of exposure and early damage from potentially carcinogenic airborne pollutants. Ann Canc Epidemiol 3:5–5

    Article  Google Scholar 

  • Lyng GD, Seegal RF (2008) Polychlorinated biphenyl-induced oxidative stress in organotypic co-cultures: experimental dopamine depletion prevents reductions in GABA. Neurotoxicology 29:301–308

  • Lyng GD, Snyder-Keller A, Seegal RF (2007) Polychlorinated biphenyl-induced neurotoxicity in organotypic cocultures of developing rat ventral mesencephalon and striatum. Toxicol Sci 97:128–139

  • Mahammad S, Parmryd I (2015) Cholesterol depletion using methyl-β-cyclodextrin. Methods Mol Biol 1232:91–102

    Article  CAS  Google Scholar 

  • Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:28

    Article  Google Scholar 

  • Malik M, Simpson JF, Parikh I et al (2013) CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 33:13320–13325

    Article  CAS  Google Scholar 

  • Mao Q, Qin W-Z, Zhang A, Ye N (2020) Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin 41:471–482

    Article  CAS  Google Scholar 

  • Markey SP, Johannessen JN, Chiueh CC, et al (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311:464–467

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49:1328–1341

    Article  Google Scholar 

  • Matsui H, Gavinio R, Asano T et al (2013) PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet 22:2423–2434

    Article  CAS  Google Scholar 

  • McShane R, Westby MJ, Roberts E et al (2019) Memantine for dementia. Cochrane Database Syst Rev 3:CD003154

    Google Scholar 

  • Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell 99:129–140

    Article  CAS  Google Scholar 

  • Migliore L, Coppedè F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97

    Article  CAS  Google Scholar 

  • Miodovnik A, Engel SM, Zhu C et al (2011) Endocrine disruptors and childhood social impairment. Neurotoxicology 32:261–267

    Article  CAS  Google Scholar 

  • Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:617588

    Article  CAS  Google Scholar 

  • Mishizen-Eberz AJ, Norris EH, Giasson BI et al (2005) Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry 44:7818–7829

    Article  CAS  Google Scholar 

  • Momb J, Lewandowski JP, Bryant JD et al (2013) Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci U S A 110:549–554

    Article  CAS  Google Scholar 

  • Moreth J, Mavoungou C, Schindowski K (2013) Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing 10:18

    Article  Google Scholar 

  • Morgan D (2011) Immunotherapy for Alzheimer’s disease: key symposium: immunotherapy for Alzheimer’s disease. J Intern Med 269:54–63

    Article  CAS  Google Scholar 

  • Mortamais M, Ash JA, Harrison J, et al (2017) Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimers Dement 13:468–492

  • Moulton PV, Yang W (2012) Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012:472751

  • Müller MLTM, Bohnen NI (2013) Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep 13:377

    Article  Google Scholar 

  • Munari F, Barracchia CG, Parolini F et al (2020) Semisynthetic modification of tau protein with Di-ubiquitin chains for aggregation studies. Int J Mol Sci 21:4400

    Article  CAS  Google Scholar 

  • Myeku N, Figueiredo-Pereira ME (2009) Ubiquitin/proteasome and autophagy/lysosome pathways: comparison and role in neurodegeneration. Handbook of neurochemistry and molecular neurobiology. Springer, Boston, pp 513–524

    Chapter  Google Scholar 

  • Narayanan V, Scarlata S (2001) Membrane binding and self-association of α-synucleins. Biochemistry 40:9927–9934

    Article  CAS  Google Scholar 

  • Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4:a011338–a011338

    Article  Google Scholar 

  • Neff JM, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manag 1:22–33

    Article  CAS  Google Scholar 

  • Niewiadomska G, Niewiadomski W, Steczkowska M, Gasiorowska A (2021) Tau Oligomers Neurotoxicity. Life (Basel) 11:28

    CAS  Google Scholar 

  • Nirzhor SSR, Khan RI, Neelotpol S (2018) The biology of glial cells and their complex roles in Alzheimer’s disease: new opportunities in therapy. Biomolecules 8(3):93

  • Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289

    Article  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  CAS  Google Scholar 

  • Orenstein SJ, Kuo S-H, Tasset I et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–440

    Article  CAS  Google Scholar 

  • Organisation Mondiale De La Santbe, Iarc (1982) Some industrial chemicals and dyestuffs: IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, Genève

    Google Scholar 

  • Orzi F, Casolla B, Rocchi R, Fornai F (2013) Prion-like mechanisms in epileptogenesis. Neurol Sci 34:1035–1038

    Article  CAS  Google Scholar 

  • Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A (2019) The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci 12:258

    Article  CAS  Google Scholar 

  • Park H-Y, Hertz-Picciotto I, Sovcikova E et al (2010) Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study. Environ Health 9:51

    Article  Google Scholar 

  • Park H-Y, Park J-S, Sovcikova E et al (2009) Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect 117:1600–1606

    Article  CAS  Google Scholar 

  • Park J-S, Kam T-I, Lee S et al (2021) Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer’s disease. Acta Neuropathol Commun 9:78

    Article  CAS  Google Scholar 

  • Patel AB, Shaikh S, Jain KR et al (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813

    Article  Google Scholar 

  • Plaitakis A, Zaganas I, Spanaki C (2013) Deregulation of glutamate dehydrogenase in human neurologic disorders: GDH in human neurologic disorders. J Neurosci Res 91:1007–1017

    Article  CAS  Google Scholar 

  • Pocar P, Augustin R, Gandolfi F, Fischer B (2003) Toxic effects of in vitro exposure to p-tert-octylphenol on bovine oocyte maturation and developmental competence. Biol Reprod 69:462–468

    Article  CAS  Google Scholar 

  • Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19:407–415

    Article  Google Scholar 

  • Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432

    Article  CAS  Google Scholar 

  • Rademakers R, Baker M, Nicholson AM et al (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205

    Article  Google Scholar 

  • Ramos-García NA, Orozco-Ibarra M, Estudillo E et al (2020) Aryl hydrocarbon receptor in post-mortem hippocampus and in serum from young, elder, and Alzheimer’s patients. Int J Mol Sci 21:1983

    Article  Google Scholar 

  • Rannug A, Rannug U (2018) The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 48:555–574

    Article  CAS  Google Scholar 

  • Reichert JM (2013) Which are the antibodies to watch in 2013? Mabs 5:1–4

    Article  Google Scholar 

  • Reistad T, Mariussen E, Fonnum F (2005) The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: the involvement of the MAP kinase pathway and protein kinase C. Toxicol Sci 83:89–100

  • Reistad T, Mariussen E, Ring A, Fonnum F (2007) In vitro toxicity of tetrabromobisphenol-A on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol Sci 96:268–278

  • Richardson JR, Miller GW (2004) Acute exposure to aroclor 1016 or 1260 differentially affects dopamine transporter and vesicular monoamine transporter 2 levels. Toxicol Lett 148:29–40

  • Ritchie GD, Still KR, Alexander WK et al (2001) A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev 4:223–312

    Article  CAS  Google Scholar 

  • Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, et al (2010) Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci 113:187–197

  • Sabatino JJ Jr, Zamvil SS (2017) Aryl hydrocarbon receptor activity may serve as a surrogate marker for MS disease activity. Neurol Neuroimmunol Neuroinflamm 4:e366

    Article  Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205

    Article  CAS  Google Scholar 

  • Samant NP, Gupta GL (2021) Novel therapeutic strategies for Alzheimer’s disease targeting brain cholesterol homeostasis. Eur J Neurosci 53:673–686

    Article  Google Scholar 

  • Schapansky J, Nardozzi JD, LaVoie MJ (2015) The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson’s disease. Neuroscience 302:74–88

    Article  CAS  Google Scholar 

  • Schmidt MF, Gan ZY, Komander D, Dewson G (2021) Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 28:570–590

    Article  CAS  Google Scholar 

  • Schmit JD, Ghosh K, Dill K (2011) What drives amyloid molecules to assemble into oligomers and fibrils? Biophys J 100:450–458

    Article  CAS  Google Scholar 

  • Schnabel J (2011) Vaccines: chasing the dream. Nature 475:S18–S19

    Article  CAS  Google Scholar 

  • Schwartz K, Boles BR (2013) Microbial amyloids – functions and interactions within the host. Curr Opin Microbiol 16:93–99

    Article  CAS  Google Scholar 

  • Seegal RF, Bush B, Brosch KO (1991) Sub-chronic exposure of the adult rat to Aroclor 1254 yields regionallyspecific changes in central dopaminergic function. Neurotoxicology 12:55–65

  • Seegal RF, Bush B, Brosch KO (1994) Decreases in dopamine concentrations in adult, non-human primate brain persist following removal from polychlorinated biphenyls. Toxicology 86:71–87

  • Seegal RF, Brosch KO, Bush B (1986) Polychlorinated biphenyls produce regional alterations of dopamine metabolism in rat brain. Toxicol Lett 30:197–202

  • Seegal RF, Brosch K, Bush B, et al (1989) Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochromocytoma (PC-12) cells. Neurotoxicology 10:757–764

  • Seegal RF, Bush B, Shain W (1990) Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol Appl Pharmacol 106:136–144

  • Seegal RF, Pappas BA, Park GA (1998) Neurochemical effects of consumption of Great Lakes salmon by rats. Regul Toxicol Pharmacol 27:S68–75

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  CAS  Google Scholar 

  • Shain W, Bush B, Seegal R (1991) Neurotoxicity of polychlorinated biphenyls: structure-activity relationship of individual congeners. Toxicol Appl Pharmacol 111:33–42

  • Shao M, Tang X, Zhang Y, Li W (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4:353–361

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Sheng B, Wang X, Su B et al (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease: impaired mitochondrial biogenesis in AD. J Neurochem 120:419–429

    Article  CAS  Google Scholar 

  • Shimshek DR, Schweizer T, Schmid P, van der Putten PH (2012) Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Sci Rep 2:262

    Article  Google Scholar 

  • Shinde R, McGaha TL (2018) The aryl hydrocarbon receptor: connecting immunity to the microenvironment. Trends Immunol 39:1005–1020

    Article  CAS  Google Scholar 

  • Singh R, Kaur N, Dhingra N, Kaur T (2021) Protein misfolding, ER Stress and Chaperones: An approach to develop chaperone-based therapeutics for Alzheimer’s Disease. Int J Neurosci 1–32

  • Singh S, Li SS-L (2012) Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13:10143–10153

    Article  CAS  Google Scholar 

  • Smulders CJGM, Bueters TJH, Van Kleef RGDM, Vijverberg HPM (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193:139–146

  • Song S, Jang S, Park J et al (2013) Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila. J Biol Chem 288:5660–5672

    Article  CAS  Google Scholar 

  • Steenland K, Hein MJ, Cassinelli RT 2nd et al (2006) Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 17:8–13

    Article  Google Scholar 

  • Stehr CM, Linbo TL, Incardona JP, Scholz NL (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92:270–278

  • Sterling JK, Adetunji M, Guttha S et al (2020) GLP-1R agonist NLY01 reduces retinal inflammation, astrocyte reactivity, and retinal ganglion cell death secondary to ocular hypertension. Cell Rep 33(5):108271

  • Stevens EA, Mezrich JD, Bradfield CA (2009) The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127:299–311

    Article  CAS  Google Scholar 

  • Sun W, Ban J-B, Zhang N et al (2014) Perinatal exposure to Di-(2-ethylhexyl)-phthalate leads to cognitive dysfunction and phospho-tau level increase in aged rats: DEHP leads to increased phospho-tau level. Environ Toxicol 29:596–603

    Article  CAS  Google Scholar 

  • Sweeney P, Park H, Baumann M et al (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6

    Article  Google Scholar 

  • Sykes SE, Hajduk SL (2013) Dual functions of α-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei. Eukaryot Cell 12:78–90

    Article  CAS  Google Scholar 

  • Szeto JYY, Lewis SJG (2016) Current treatment options for Alzheimer’s disease and Parkinson’s disease dementia. Curr Neuropharmacol 14:326–338

    Article  CAS  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36

    Article  CAS  Google Scholar 

  • Taylor TN, Caudle WM, Shepherd KR, et al (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 29:8103–8113

  • Téllez-Rojo MM, Cantoral A, Cantonwine DE et al (2013) Prenatal urinary phthalate metabolites levels and neurodevelopment in children at two and three years of age. Sci Total Environ 461–462:386–390

    Article  Google Scholar 

  • Thomas SJ, Grossberg GT (2009) Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging 4:367–377

    CAS  Google Scholar 

  • Tisch U, Schlesinger I, Ionescu R et al (2013) Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 8:43–56

    Article  CAS  Google Scholar 

  • Troster AI, Ruff RM, Watson DP (1991) Dementia as a neuropsychological consequence of chronic occupational exposure to polychlorinated biphenyls (PCBs). Arch Clin Neuropsychol 6:301–318

    Article  CAS  Google Scholar 

  • Trudeau VL, Chiu S, Kennedy SW, Brooks RJ (2002) Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina. Environ Health Perspect 110:269–275

    Article  CAS  Google Scholar 

  • Tsigelny IF, Bar-On P, Sharikov Y et al (2007) Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein: modeling of α-syn oligomer formation. FEBS J 274:1862–1877

    Article  CAS  Google Scholar 

  • Tsigelny IF, Crews L, Desplats P et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3:e3135

    Article  Google Scholar 

  • Ullrich C, Humpel C (2009b) Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model. Neurochem Res 34:2147–2153

  • United States Environmental Protection Agency (2012) What are total petroleum hydrocarbons (TPH)? In: United States Environmental Protection Agency. https://www3.epa.gov/region1/eco/uep/tph.html. Accessed 7 Dec 2021

  • (2018) Using oils as pesticides. In: Tamu.edu. https://agrilifeextension.tamu.edu/library/farming/using-oils-as-pesticides/. Accessed 28 Aug 2021

  • Vaiserman A (2014) Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis 5:419–429

    Google Scholar 

  • Vandrovcova J, Anaya F, Kay V et al (2010) Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimer Res 7:726–734

    Article  CAS  Google Scholar 

  • Venkataramani V, Wirths O, Budka H et al (2012) Antibody 9D5 recognizes oligomeric pyroglutamate amyloid-β in a fraction of amyloid-β deposits in Alzheimer’s disease without cross-reactivity with other protein aggregates. J Alzheimers Dis 29:361–371

    Article  CAS  Google Scholar 

  • Venkatesan AK, Halden RU (2013) National inventory of alkylphenol ethoxylate compounds in U.S. sewage sludges and chemical fate in outdoor soil mesocosms. Environ Pollut 174:189–193

    Article  CAS  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2003) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192:95–106

    Article  CAS  Google Scholar 

  • Vieira LR, Sousa A, Frasco MF et al (2008) Acute effects of Benzo[a]pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Sci Total Environ 395:87–100

    Article  CAS  Google Scholar 

  • Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues: Mitochondrial alterations in Parkinson’s disease. J Neurochem 107:317–328

    Article  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    Article  CAS  Google Scholar 

  • Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57:1041–1048

    Article  CAS  Google Scholar 

  • Watanabe H, Suzuki A, Goto M et al (2004) Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol. J Mol Endocrinol 33:243–252

    Article  CAS  Google Scholar 

  • Watanabe Y, Taguchi K, Tanaka M (2020) Ubiquitin, autophagy and neurodegenerative diseases. Cells 9:2022

    Article  CAS  Google Scholar 

  • Werder EJ, Shrestha S, O’Brien KM, et al (2021) Traffic-related air pollution and olfactory impairment among women in a nationwide US cohort. In ISEE Conference Abstracts Vol. 2021, No. 1. 2021.

  • Williams SD, Ladd DE, Farmer JJ (2006) Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky 2002-2003. US Department of the Interior, US Geological Survey.

  • Williamson R, Usardi A, Hanger DP, Anderton BH (2008) Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 22(5):1552–9

    Article  CAS  Google Scholar 

  • Wirdefeldt K, Adami H-O, Cole P, et al (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26 Suppl 1:S1–58

  • Xie A, Gao J, Xu L, Meng D (2014) Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. Biomed Res Int 2014:648740

    Article  Google Scholar 

  • Xu G, Zhou Q, Wan C et al (2013) 2,3,7,8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. Neurotoxicology 37:63–73

    Article  CAS  Google Scholar 

  • Yahi N, Fantini J (2014) Deciphering the glycolipid code of Alzheimer’s and Parkinson’s amyloid proteins allowed the creation of a universal ganglioside-binding peptide. PLoS One 9:e104751

    Article  Google Scholar 

  • Yeo M, Berglund K, Hanna M et al (2013) Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci U S A 110:4315–4320

    Article  CAS  Google Scholar 

  • Zamanian JL, Xu L, Foo LC et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  Google Scholar 

  • Zhang H, Ding J, Tian W et al (2009) Ganglioside GM1 binding the N-terminus of amyloid precursor protein. Neurobiol Aging 30:1245–1253

    Article  Google Scholar 

  • Zhu X, Perry G, Moreira PI, et al (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 9:147–153

Download references

Funding

The authors received funding from the Deanship of Scientific Research at King Khalid University for this work through the Research Group Project under grant number R.G.P.2/96/42.

Author information

Authors and Affiliations

Authors

Contributions

B. Mathew planned the study and edited the manuscript. Rajalakshmi R. and Roshni P.R. wrote the original draft preparation. Abdullah G.A., Uddin M.S. and Lotfi Aleya did the data curation and proof reading.

Corresponding authors

Correspondence to Roshni Pushpa Ragavan or Bijo Mathew.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, R., Ragavan, R.P., Al-Sehemi, A.G. et al. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer’s disease and Parkinson’s disease: a global concern. Environ Sci Pollut Res 29, 10928–10949 (2022). https://doi.org/10.1007/s11356-021-17931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17931-3

Keywords

Navigation