Skip to main content

Advertisement

Log in

The influence of salinity on the toxicity of remediated seawater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract  

Mercury (Hg) is one of the most hazardous pollutants, due to its toxicity, biological magnification and worldwide persistence in aquatic systems. Thus, new efficient nanotechnologies (e.g. graphene oxide functionalized with polyethyleneimine (GO-PEI)) have been developed to remove this metal from the water. Aquatic environments, in particular transitional systems, are also subjected to disturbances resulting from climate change, such as salinity shifts. Salinity is one of the most relevant factors that influences the distribution and survival of aquatic species such as mussels. To our knowledge, no studies assessed the ecotoxicological impairments induced in marine organisms exposed to remediate seawater (RSW) under different salinity levels. For this, the focus of the present study was to evaluate the effects of seawater previously contaminated with Hg and remediated with GO-PEI, using the species Mytilus galloprovincialis, maintained at three different salinities (30, 20 and 40). The results obtained demonstrated similar histopathological and metabolic alterations, oxidative stress and neurotoxicity in mussels under RSW treatment at stressful salinity conditions (20 and 40) in comparison to control salinity (30). On the other hand, the present findings revealed toxicological effects including cellular damage and histopathological impairments in mussels exposed to Hg contaminated seawater in comparison to non-contaminated ones, at each salinity level. Overall, these results confirm the high efficiency of GO-PEI to sorb Hg from water with no noticeable toxic effects even under different salinities, leading to consider it a promising eco-friendly approach to remediate contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Ali I, Khan TA, Asim M (2011) Removal of arsenate from ground water by electrocoagulation method. Environ Sci Pollut Res 19:1668–1676

    Article  CAS  Google Scholar 

  • Amachree D, Moody AJ, Handy RD (2014) Comparison of intermittent and continuous exposures to inorganic mercury in the mussel, Mytilus edulis: Accumulation and sub-lethal physiological effects. Ecotoxicol Environ Saf 109:133–142

    Article  CAS  Google Scholar 

  • Amiard-Triquet C, Amiard J-C. Rainbow PS (2012) Ecological biomarkers: indicators of ecotoxicological effects. CRC Press

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

  • Anestis A, Lazou A, Portner HO, Michaelidis B (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:911–921

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat M (2019) Remediation of wastewater using various nano-materials. Arab J Chem 12:4897–4919

    Article  CAS  Google Scholar 

  • Appannagari RR (2017) Environmental pollution causes and consequences: a study. North Asian Int Res J Soc Sci Humanit 3(8):2454–9827

    Google Scholar 

  • Araújo R, Castro ACM, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today Proc 2(1):315–320

    Article  Google Scholar 

  • Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 147:752–758

    Article  CAS  Google Scholar 

  • Attig H, Dagnino A, Negri A, Jebali J, Boussetta H, Viarengo A, Banni M (2010) Uptake and biochemical responses of mussels Mytilus galloprovincialis exposed to sublethal nickel concentrations. Ecotoxicol Environ Saf 73:1712-e 1719

    Article  CAS  Google Scholar 

  • Batley G, Simpson S (2016) Csiro publishing, sediment quality assessment: a practical guide

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  Google Scholar 

  • Bebianno MJ, Barreira LA (2009) Polycyclic aromatic hydrocarbons concentrations and biomarker responses in the clam Ruditapes decussatus transplanted in the Ria Formosa lagoon. Ecotoxicol Environ Saf 72:1849–1860

    Article  CAS  Google Scholar 

  • Belivermiş M, Kılıç Ö, Efe E, Sezer N, Gönülal O, Arslan Kaya TN (2019) Mercury and Po-210 in mollusc species in the island of Gökçeada in the north-eastern Aegean Sea: bioaccumulation and risk assessment for human consumers. Chemosphere 235:876–884

    Article  CAS  Google Scholar 

  • Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355:115–126

    Article  CAS  Google Scholar 

  • Bessa A, Henriques B, Gonçalves G, Irurueta G, Pereira E, Marques PAAP (2020) Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chem Eng J 398(5):125587

    Article  CAS  Google Scholar 

  • Beukema J, Dekker R, Philippart C (2010) Long-term variability in bivalve recruitment, mortality, and growth and their contribution to fluctuations in food stocks of shellfish-eating birds. Mar Ecol Prog Ser 414:117–130

    Article  Google Scholar 

  • Bignell JP, Dodge MJ, Feist SW, Lyons B, Martin PD, Taylor NGH, Stone D, Travalent L, Stentiford GD (2008) Mussel histopathology: effects of season, disease and species. Aquat Biol 2(1):1–15

    Article  Google Scholar 

  • Briant N, Chouvelon T, Martinez L, Brach-Papa C, Chiffoleau J, Savoye N, Sonke J, Knoery J (2017) Spatial and temporal distribution of mercury and methylmercury in bivalves from the French coastline. Mar Pollut Bull 114(2):1096–1102

    Article  CAS  Google Scholar 

  • Bussell JA, Gidman EA, Causton DR, Gwynn-Jones D, Malham SK, Jones MLM, Reynolds B, Seed R (2008) Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol 358(1):78–85

    Article  Google Scholar 

  • Cai W-J, Wang Y, Hodson RE (1998) Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim Cosmochim Acta 62(3):473–483

    Article  CAS  Google Scholar 

  • Can M, Dogan B, Saboori B (2020) Does trade matter for environmental degradation in developing countries? New evidence in the context of export product diversification. Environ Sci Pollut Res 27(13):14702–14710

    Article  CAS  Google Scholar 

  • Cao Z, Wang L, Yang L, Yu J, Lv J, Meng M, Li G (2020) Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu China. Mar Pollut Bull 158(7):111427

    Article  CAS  Google Scholar 

  • Cappello T, Mauceri A, Corsaro C, Maisano M, Parrino V, Lo Paro G, Messina G, Fasulo S (2013) Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar Pollut Bull 77(1–2):132–139

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Carregosa V, Velez C, Soares AMVM, Figueira E, Freitas R (2014) Physiological and biochemical responses of three Veneridae clams exposed to salinity changes. Comp Biochem Physiol B Biochem Mol Biol 177–178:1–9

    Article  CAS  Google Scholar 

  • Casas S, Bacher C (2006) Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis, applied to environmental monitoring. J Sea Res 56(2):168–181

    Article  CAS  Google Scholar 

  • Chalkiadaki O, Dassenakis M, Paraskevopoulou V, Lydakis-Simantiris N (2014) Experimental study of cadmium bioaccumulation in three Mediterranean marine bivalve species: correlation with selected biomarkers. Pure Appl Chem 86:1189–1204

    Article  CAS  Google Scholar 

  • Cheng W (2004) The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish Shellfish Immunol 16(3):295–306

    Article  CAS  Google Scholar 

  • Coppola F, Almeida Â, Henriques B, Soares AMVM, Figueira E, Pereira E, Freitas R (2017) Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. Sci Total Environ 601–602:1129–1138

    Article  CAS  Google Scholar 

  • Coppola F, Bessa A, Henriques B, Russo T, Soares AMVM, Figueira E, Marques PAAP, Polese G, Di Cosmo A, Pereira E, Freitas R (2020) Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury. Comp Biochem Physiol A Mol Integr Physiol 243(2):110674

    Article  CAS  Google Scholar 

  • Coppola F, Bessa A, Henriques B, Russo T, Soares AMVM, Figueira E, Pereira E, Marques P, Polese G, Freitas R (2020b) The role of temperature on the impact of remediated water towards marine organisms. Water 1–17

  • Costa PM, Carreira S, Costa MH, Caeiro S (2013) Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquat Toxicol 126:442–454

    Article  CAS  Google Scholar 

  • Costley CT, Mossop KF, Dean JR, Garden LM, Marshall J, Carroll J (2000) Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal Chim Acta 405(1–2):179–183

    Article  CAS  Google Scholar 

  • Cuevas N, Zorita I, Costa PM, Franco J, Larreta J (2015) Development of histopathological indices in the digestive gland and gonad of mussels: integration with contamination levels and effects of confounding factors. Aquat Toxicol 162:152–164

    Article  CAS  Google Scholar 

  • De Coen W, Janssen C (1997) The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. J Aquat Ecosyst Stress Recovery 6:43–55

    Article  Google Scholar 

  • De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R (2018a) The influence of salinity on the effects of Multi-walled carbon nanotubes on polychaetes. Sci Rep 8(1):1–14

    CAS  Google Scholar 

  • De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R (2018b) Effects of multi-walled carbon nanotube materials on Ruditapes philippinarum under climate change: the case of salinity shifts. Aquat Toxicol 199(4):199–211

    Article  CAS  Google Scholar 

  • Delgado M, Pérez-Camacho A (2007) Comparative study of gonadal development of Ruditapes philippinarum (Adams and Reeve) and Ruditapes decussatus (L.) (Mollusca: Bivalvia): influence of temperature. Sci Mar 71:471–484

    Article  Google Scholar 

  • Denton GRW, Burdon-Jones C (1981) Influence of temperature and salinity on the uptake, distribution and depuration of mercury, cadmium and lead by the black-lip oyster Saccostrea echinata. Mar Biol 64(3):317–326

    Article  CAS  Google Scholar 

  • Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Ellman GL, Lourtney DK, Andres V, Gmelin G (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Fasulo S, Iacono F, Cappello T, Corsaro C, Maisano M, D’Agata A, Giannetto A, De Domenico E, Parrino V, Lo Paro G, Mauceri A (2012) Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments. Ecotoxicol Environ Saf 84:139–146

    Article  CAS  Google Scholar 

  • Figueira E, Cardoso P, Freitas R (2012) Ruditapes decussatus and Ruditapes philippinarum exposed to cadmium: toxicological effects and bioaccumulation patterns. Comp Biochem Physiol C 156:80–86

    CAS  Google Scholar 

  • Figueira E, Freitas R (2013) Consumption of Ruditapes philippinarum and Ruditapes decussatus: comparison of element accumulation and health risk. Environ Sci Pollut Res 20:5682–5691

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Valbonesi P, Fabbri E (2013) The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis. Aquat Toxicol 140–141:249–256

    Article  CAS  Google Scholar 

  • Freitas R, Coppola F, Costa S, Manzini C, Intorre L, Meucci V, Soares AMVM, Pretti C, Solé M (2019a) Does salinity modulates the response of Mytilus galloprovincialis exposed to triclosan and diclofenac? Environ Pollut 251:756–765

    Article  CAS  Google Scholar 

  • Freitas R, Coppola F, De Marchi L, Codella V, Pretti C, Chiellini F, Morelli A, Polese G, Soares AMVM, Figueira E (2018) The influence of arsenic on the toxicity of carbon nanoparticles in bivalves. J Hazard Mater 358:484–493

    Article  CAS  Google Scholar 

  • Freitas R, Leite C, Pinto J, Costa M, Monteiro R, Henriques B, Di Martino F, Coppola F, Soares AMVM, Solé M, Pereira E (2019b) The influence of temperature and salinity on the impacts of lead in Mytilus galloprovincialis. Chemosphere 235:403–412

    Article  CAS  Google Scholar 

  • Freitas R, Salamanca L, Velez C, Wrona FJ, Soares AMVM, Figueira E (2016) Multiple stressors in estuarine waters: effects of arsenic and salinity on Ruditapes philippinarum. Sci Total Environ 541:1106–1114

    Article  CAS  Google Scholar 

  • Freitas R, Silvestro S, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C (2020) Combined effects of salinity changes and salicylic acid exposure in Mytilus galloprovincialis. Sci Total Environ 715:136804

    Article  CAS  Google Scholar 

  • Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, Xiao X, Ran R, Cheng F, Peng X, Wang Z, Wa Tang U (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52(9):1411–1422

    Article  CAS  Google Scholar 

  • Gagnaire B, Frouin H, Moreau K, Thomas-Guyon H, Renault T (2006) Effects of temperature and salinity on hemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol 20(4):536–547

    Article  CAS  Google Scholar 

  • Gamain P, Gonzalez P, Cachot J, Pardon P, Tapie N, Gourves PY, Budzinski H, Morin B (2016) Combined effects of pollutants and salinity on embryo-larval development of the Pacific oyster, Crassostrea gigas. Mar Environ Res 113:31–38

    Article  CAS  Google Scholar 

  • Gibson JR, Najjar RG (2000) The response of Chesapeake Bay salinity to climate-induced changes in streamflow. Limnol Oceanogr 45(8):1764–1772

    Article  CAS  Google Scholar 

  • Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S (2021) A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ 755(9):142564

    Article  CAS  Google Scholar 

  • Gonçalves AMM, Barroso DV, Serafim TL, Verdelhos T, Marques JC, Gonçalves F (2017) The biochemical response of two commercial bivalve species to exposure to strong salinity changes illustrated by selected biomarkers. Ecol Indic 77:59–66

    Article  CAS  Google Scholar 

  • Gonzalez-Rey M, Bebianno MJ (2014) Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis. Aquat Toxicol 148:221–230

    Article  CAS  Google Scholar 

  • Grossman GM, Krueger AB (1995) Economic growth and the environment. Q J Econ Oxford Univ Press 110(2):353–377

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases. J Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  • Hamer B, Jakšić Ž, Pavičić-Hamer D, Perić L, Medaković D, Ivanković D, Pavičić J, Zilberberg C, Schröderd HC, Müllerd WEG, Smodlakaa N, Batel R (2008) Effect of hypoosmotic stress by low salinity acclimation of Mediterranean mussels Mytilus galloprovincialis on biological parameters used for pollution assessment. Aquat Toxicol 89:137–151

    Article  CAS  Google Scholar 

  • Hauton C, Hawkins LE, Hutchinson S (2000) The effects of salinity on the interaction between a pathogen (Listonella anguillarum) and components of a host (Ostrea edulis) immune system. Comp Biochem Physiol B Biochem Mol Biol 127(2):203–212

    Article  CAS  Google Scholar 

  • Hauton C (2016) Effects of salinity as a stressor to aquatic invertebrates. In: Solan M, Whiteley N (eds) Stressors in the Marine Environment: Physiological and ecological responses; societal implications. Oxford University Press, Oxford, GB, pp 3–24

    Chapter  Google Scholar 

  • Henke KR, Hutchison AR, Krepps MK, Parkin S, Atwood DA (2001) Chemistry of 2,4,6-trimercapto- 1,3,5-triazine (TMT): acid dissociation constants and group 2 complexes. Inorg Chem 40:4443–4447

    Article  CAS  Google Scholar 

  • Henriques B, Gonçalves G, Emami N, Pereira E, Vila M, Marques PAAP (2016) Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. J Hazard Mater 301:453–461

    Article  CAS  Google Scholar 

  • Henriques B, Teixeira A, Figueira P, Reis AT, Almeida J, Vale C, Pereira E (2019) Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca. Sci Total Environ 652:880–888

    Article  CAS  Google Scholar 

  • Hermanns S, Reiprich P, Müller HW (2001) A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. J Neurosci Methods 110(1–2):141–146

    Article  CAS  Google Scholar 

  • Hoarau P, Garello G, Gnassia-barelli M, Romeo M, Girard J-P (2002) Purification and partial characterization of seven glutathione S-transferase isoforms from the clam Ruditapes decussatus. Eur J Biochem 269:4359–4366

    Article  CAS  Google Scholar 

  • IPCC (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Res Handb Clim Chang Agric Law, 1–472.

  • IPMA (2018). Portuguese Institute for Sea and Atmosphere (IPMA). https://www.ipma.pt/en/maritima/sat-sst/index-8days.jsp?area=zona2

  • Jackson DR, Jesien R (1996) Chesapeake Bay low flow study. Susquehanna River Basin Commission

  • Johnson BH, Kim KW, Heath RE, Hsieh BB, Butler HL (1991) Development and verification of a three-dimensional numerical hydrodynamic, salinity and temperature model of Chesapeake Bay, "Technical Report HL-91–7, US Army engineer waterways experiment station, Vicksburg, MS

  • Justić D, Rabalais NN, Turner RE (1996) Effects of climate change on hypoxia in coastal waters: a doubled CO2 scenario for the northern Gulf of Mexico. Limnol Oceanogr 41(5):992–1003

    Article  Google Scholar 

  • Kefi FJ, Boubaker S, Menif NTE (2014) Relative growth and reproductive cycle of the date mussel Lithophaga lithophaga (Linnaeus, 1758) sampled from the Bizerte Bay (Northern Tunisia). Helgol Mar Res 68(3):439–450

    Article  Google Scholar 

  • Kim M, Garcia A, Malinowski P, Park EJ (2017) Mercury uptake by eastern oysters (Crassostrea virginica) in oyster restoration project of the New York Harbor. Int J Environ Sci Technol 14(10):2269–2276

    Article  CAS  Google Scholar 

  • Kim WS, Huh S-H, Lee TW (2001) Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia: Veneridae). Mar Biol 138:157–162

    Article  CAS  Google Scholar 

  • King FD, Packard TT (1975) Respiration and the activity of the respiratory electron transport system in marine zooplankton1. Limnol Oceanogr 20(5):849–854

    Article  Google Scholar 

  • Kristan U, Kanduč T, Osterc A, Šlejkovec Z, Ramšak A, Stib ilj, V. (2014) Assessment of pollution level using Mytilus galloprovincialis as a bioindicator species: the case of the Gulf of Trieste. Mar Pollut Bull 89(1–2):455–463

    Article  CAS  Google Scholar 

  • Kuchel RP, Raftos DA, Nair S (2010) Immunosuppressive effects of environmental stressors on immunological function in Pinctada imbricata. Fish Shellfish Immunol 29(6):930–936

    Article  Google Scholar 

  • Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M (2020) Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications. Environ Pollut 264:114728

    Article  CAS  Google Scholar 

  • Leite C, Coppola F, Monteiro R, Russo T, Polese G, Lourenço MAO, Silva MRF, Ferreira P, Soares AMVM, Freitas R, Pereira E (2020) Biochemical and histopathological impacts of rutile and anatase (TiO2 forms) in Mytilus galloprovincialis. Sci Total Environ 719:134886

    Article  CAS  Google Scholar 

  • Liu C, Chen L, Liang S, Li Y (2020) Distribution of total mercury and methylmercury and their controlling factors in the East China Sea. Environ Pollut 258:113667

    Article  CAS  Google Scholar 

  • Liu G, Cai Y, O'Driscoll N (2012) Chemistry and toxicology of mercury. John Wiley and Sons, Environmental chemistry and toxicology of mercury, John Wiley & Sons, Hoboken, Book New Jersey

  • Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153(1):176–183

    Article  CAS  Google Scholar 

  • Maisano M, Cappello T, Natalotto A, Vitale V, Parrino V, Giannetto A, Oliva S, Mancini G, Cappello S, Mauceri A, Fasulo S (2017) Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: histological changes, neurotoxicity and hypoxic stress. Mar Environ Res 128:114–123

    Article  CAS  Google Scholar 

  • Malagoli D, Casarini L, Sacchi S, Ottaviani E (2007) Stress and immune response in the mussel Mytilus galloprovincialis. Fish Shellfish Immunol 23(1):171–177

    Article  CAS  Google Scholar 

  • Matlock MM, Henke KR, Atwood DA, Robertson D (2001) Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res 35:3649–3655

    Article  CAS  Google Scholar 

  • Matozzo V, Chinellato A, Munari M, Bressan M, Marin MG (2013) Can the combination of decreased pH and increased temperature values induce oxidative stress in the clam Chamelea gallina and the mussel Mytilus galloprovincialis? Mar Pollut Bull 72(1):34–40

    Article  CAS  Google Scholar 

  • Matozzo V, Marin MG (2011) Bivalve immune responses and climate changes: is there a relationship? Invertebr Surviv J 8:70–77

    Google Scholar 

  • Matozzo V, Monari M, Foschi J, Serrazanetti GP, Cattani O, Marin MG (2007) Effects of salinity on the clam Chamelea gallina. Part I: alterations in immune responses. Mar Biol 151(3):1051–1058

    Article  Google Scholar 

  • Mohammed R, Scholz M (2018) Critical review of salinity intrusion in rivers and estuaries. J Water Clim Change 9(1):1–16

    Article  CAS  Google Scholar 

  • Moreira A, Figueira E, Soares AMVM, Freitas R (2016) Salinity influences the biochemical response of Crassostrea angulata to Arsenic. Environ Pollut 214:756–766

    Article  CAS  Google Scholar 

  • Morosetti B, Freitas R, Pereira E, Hamza H, Andrade M, Coppola F, Maggioni D, Della Torre C (2020) Will temperature rise change the biochemical alterations induced in Mytilus galloprovincialis by cerium oxide nanoparticles and mercury? Environ Res 188(5):109778. https://doi.org/10.1016/j.envres.2020.109778

    Article  CAS  Google Scholar 

  • Morozesk M, Franqui LS, Mansano AS, Martinez DST, Fernandes MN (2018) Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: the influence of two co-exposure protocols on in vitro toxicity tests. Aquat Toxicol 200(4):136–147

    Article  CAS  Google Scholar 

  • Moschino V, Delaney E, Ros LD (2012) Assessing the significance of Ruditapes philippinarum as a sentinel for sediment pollution: bioaccumulation and biomarker responses. Environ Pollut 171:52–60

    Article  CAS  Google Scholar 

  • Munari M, Matozzo V, Marin MG (2011) Combined effects of temperature and salinity on functional responses of hemocytes and survival in air of the clam Ruditapes philippinarum. Fish Shellfish Immunol 30:1024–1030

    Article  Google Scholar 

  • Muthukrishnan M, Guha B (2008) Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219:171–178

    Article  CAS  Google Scholar 

  • Navarro JM, Gonzalez CM (1998) Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture 167:315–327

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:51–58

    Article  Google Scholar 

  • Oliveira P, Barboza LGA, Branco V, Figueiredo N, Carvalho C, Guilhermino L (2018) Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicol Environ Saf 164(8):155–163. https://doi.org/10.1016/j.ecoenv.2018.07.062

    Article  CAS  Google Scholar 

  • Ongan S, Isik C, Ozdemir D (2020) Economic growth and environmental degradation: evidence from the US case environmental Kuznets curve hypothesis with application of decomposition. J Environ Econ Policy 1–8. https://doi.org/10.1080/21606544.2020.1756419

  • Pagano M, Capillo G, Sanfilippo M, Palato S, Trischitta F, Manganaro A, Faggio C (2016) Evaluation of functionality and biological responses of Mytilus galloprovincialis after exposure to quaternium-15 (Methenamine 3-Chloroallylochloride). Molecules 21(2):1–12. https://doi.org/10.3390/molecules21020144

    Article  CAS  Google Scholar 

  • Parisi MG, Pirrera J, La Corte C, Dara M, Parrinello D, Cammarata M (2021) Effects of organic mercury on Mytilus galloprovincialis hemocyte function and morphology. J Comp Physiol B 191(1):143–158

    Article  CAS  Google Scholar 

  • Peteiro LG, Woodin SA, Wethey DS, Costas-Costas D, Martínez-Casal A, Olabarria C, Vázquez E (2018) Responses to salinity stress in bivalves: evidence of ontogenetic changes in energetic physiology on Cerastoderma edule. Sci Rep 8(1):8329

    Article  CAS  Google Scholar 

  • Philippart CJM, Anadón R, Danovaro R, Dippner JW, Drinkwater KF, Hawkins SJ, Oguz T, O’Sullivan G, Reid PC (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J Exp Mar Biol Ecol 400(1–2):52–69

    Article  Google Scholar 

  • Pörtner, H.-O., Karl, D.M., Boyd, P.W., Cheung, W.W.L., Lluch-Cota, S.E., Nojiri, Y., Schmidt, D.N., Zavialov, P.O., (2014). Ocean systems. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L., Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part a: Global And Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 411 and 484.

  • Pranovi F, Franceschini G, Casale M, Zucchetta M, Torricelli P, Giovanardi O (2006) An ecological imbalance induced by a non-native species: The Manila clam in the Venice Lagoon. Biol Invasions 8(4):595–609. https://doi.org/10.1007/s10530-005-1602-5

    Article  Google Scholar 

  • Pugazhenthi G, Sachan S, Kishore N, Kumar A (2005) Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. J Membr Sci 254:229–239

    Article  CAS  Google Scholar 

  • Qiu JW, Tremblay R, Bourget E (2002) Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar Ecol Prog Ser 228:143–152

    Article  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236

    CAS  Google Scholar 

  • Ramos-Gómez J, Coz A, Viguri JR, Luque Á, Martín-Diaz ML, Del Valls TÁ (2011) Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment. Environ Pollut 159:1914–1922

    Article  CAS  Google Scholar 

  • Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117

    Article  CAS  Google Scholar 

  • Reid H, Soudant P, Lambert C, Paillard C, Birkbeck T (2003) Salinity effects on immune parameters of Ruditapes philippinarum challenged with Vibrio tapetis. Dis Aquat Org 56(3):249–258

    Article  CAS  Google Scholar 

  • Rodrigues AP, Santos LHMLM, Oliva-Teles MT, Delerue-Matos C, Guimarães L (2014) Joint effects of salinity and the antidepressant sertraline on the estuarine decapod Carcinus maenas. Aquat Toxicol 156:169–178

    Article  CAS  Google Scholar 

  • Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends Anal Chem 30(3):507–516

    Article  CAS  Google Scholar 

  • Sarà G, Romano C, Widdows J, Staff FJ (2008) Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis — Mollusca: Bivalvia) within the Mediterranean Sea. J Exp Mar Biol Ecol 363:130–136

    Article  Google Scholar 

  • Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15. https://doi.org/10.1186/1752-153X-8-15

    Article  CAS  Google Scholar 

  • Sıkdokur E, Belivermiş M, Sezer N, Pekmez M, Bulan ÖK, Kılıç Ö (2020) Effects of microplastics and mercury on manila clam Ruditapes philippinarum: feeding rate, immunomodulation, histopathology and oxidative stress. Environ Pollut 262:114247

    Article  CAS  Google Scholar 

  • Solé M, Rivera-Ingraham G, Freitas R (2018) The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: a methodological approach. J Comp Physiol c 212:18–24

    Google Scholar 

  • Sun X, Li B-S, Liu X-L, Li C-X (2020) Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen Bay. China J Chem 2020:1–13

    Google Scholar 

  • Tavares DS, Daniel-da-Silva AL, Lopes CB, Silva NJO, Amaral VS, Rocha J, Pereira E, Trindade T (2013) Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. J Mater Chem A 1:8134

    Article  CAS  Google Scholar 

  • Velasco J, Gutiérrez-Cánovas C, Botella-Cruz M, Sánchez-Fernández D, Arribas P, Carbonell JA, Millán A, Pallarés S (2019) Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos Trans R Soc Lond B Biol Sci 374(1764):20180011

    Article  CAS  Google Scholar 

  • Velez C, Teixeira M, Wrona FJ, Soares AMVM, Figueira E, Freitas R (2016) Clam Ruditapes philippinarum recovery from short-term exposure to the combined effect of salinity shifts and Arsenic contamination. Aquat Toxicol 173:154–164

    Article  CAS  Google Scholar 

  • Westerbom M, Kilpi M, Mustonen O (2002) Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar Biol 140(991):999

    Google Scholar 

  • Widdows J, Shick JM (1985) Physiological responses of Mytilus edulis and Cardium edule to aerial exposure. Mar Biol 85:217–232

    Article  Google Scholar 

  • Zaccaron da Silva A, Zanettea J, Ferreira JF, Guzenski J, Marques MRF, Bainy ACD (2005) Effects of salinity on biomarker responses in Crassostrea rhizophorae (Mollusca, Bivalvia) exposed to diesel oil. Ecotoxico Environ Saf 62:376–382

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C, Pomati F, Rossetti C, Calamari D (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res 13:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due for the financial support to CESAM, REQUIMTE and TEMA (UIDB/50017/2020 + UIDP/50017/2020 and UID/QUI/50006/2013, UIDB/00481/2020 + UIDP/00481/2020, respectively) and to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020.

Funding

This work was funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. This work was also financially supported by the project BISPECIAl: BIvalveS under Polluted Environment and ClImate chAnge (POCI-01–0145-FEDER-028425) funded by FEDER, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES. This work was also supported by the budgets of the Regional Operational Program of the Center and national funds (CENTRO-01–0145-FEDER-030513) in its FEDER component and the Foundation for Science and Technology in its State Budget, PTDC/NAN- MAT/30513/2017 (project H2OValue). Francesca Coppola benefited from a PhD grant (SFRH/BD/118582/2016) given by the National Funds through the Portuguese Science Foundation (FCT), supported by FSE and Programa Operacional Capital Humano (POCH) e da União Europeia.

Author information

Authors and Affiliations

Authors

Contributions

Rosa Freitas and Gianluca Polese supervised the students (Francesca Coppola, Tania Russo) in all biochemical and histopathological assays. Eduarda Pereira and Paula Marques supervised the student Francesca Coppola in all Hg quantifications and synthesis and characterization of nanomaterial. Coppola Francesca performed all laboratory exposures and chemical, biochemical and histopathological analyses. Amadeus M.V.M. Soares financed the resources.

Corresponding author

Correspondence to Rosa Freitas.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Philippe Garrigues.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, F., Russo, T., Soares, A.M.V.M. et al. The influence of salinity on the toxicity of remediated seawater. Environ Sci Pollut Res 29, 32967–32987 (2022). https://doi.org/10.1007/s11356-021-17745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17745-3

Keywords

Navigation