Skip to main content

Advertisement

Log in

The Hg behaviors in mangrove ecosystems revealed by Hg stable isotopes: a case study of Maowei mangrove

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As one of the most productive marine ecosystems in the tropics and subtropics, mangroves are an important part of the global mercury (Hg) cycling. The environmental processes and effects of Hg in mangroves are complex and affect human Hg exposure, and it is crucial to understand Hg behaviors in the mangrove ecosystem. However, clarifying Hg behaviors in the mangrove ecosystem remains difficult because of an insufficient understanding of the dominant pathways. In this study, measurements of mercury (Hg) concentration and isotope ratios in sediment and plant tissues from a mangrove wetland were used to investigate Hg isotope fractionation in mangrove plants and sediments. Spatial patterns in Hg concentration and isotope signatures indicate that Hg re-emission in the sediment was suppressed by mangrove plants. The ratio of Δ199Hg/Δ201Hg was 0.93 for all sediments, indicating that Hg mass-independent fractionation in the mangrove ecosystem was primarily affected by photoreduction, while the ratios of Δ199Hg/Δ201Hg and Δ199Hg/δ202Hg for plant tissues suggested that natural organic matter reduction of Hg(II) was occurred in the plants. The distinct positive Δ199Hg values found in mangrove plants were supposed to be the results of the unique physiological characteristics of mangroves. The exterior Hg sources from atmosphere and seawater emphasize the role of mangrove ecosystems in the global Hg biogeochemistry. Our study highlights the distinct Hg isotope signatures in the mangrove from that in forests and indicates unique Hg behaviors in the mangrove ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Bergamaschi B, Krabbenhoft D, Aiken G, Patino E, Rumbold D, Orem W (2012) Tidally driven export of dissolved organic carbon, total mercury, and methyl-mercury from a mangrove-dominated estuary. Environ Sci Technol 46:1371–1378

    Article  CAS  Google Scholar 

  • Bergquist B, Blum J (2007) Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–420

    Article  CAS  Google Scholar 

  • Blum J, Bergquist B (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:359

    Article  Google Scholar 

  • Blum J, Johnson M (2017) Recent developments in mercury stable isotope analysis. Rev Mineral Geochem 82:25

    Article  Google Scholar 

  • Blum J, Popp B, Drazen J, Choy C, Johnson M (2013) Methylmercury production below the mixed layer in the North Pacific Ocean. Nat Geosci 6:879–884

    Article  CAS  Google Scholar 

  • Blum J, Sherman L, Johnson M (2014) Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci 42:249–269

    Article  CAS  Google Scholar 

  • Bouchet S, Tessier E, Monperrus M, Bridou R, Clavier J, Thouzeau G, Amouroux D (2011) Measurements of gaseous mercury exchanges at the sediment–water, water–atmosphere and sediment–atmosphere interfaces of a tidal environment (Arcachon Bay, France). J Environ Monit 13:1351–1359

    Article  CAS  Google Scholar 

  • Chen J, Hintelmann H, Feng X, Dimock B (2012) Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON. Canada Geochim Cosmochim Acta 90:33–46

    Article  CAS  Google Scholar 

  • Chen J, Hintelmann H, Zheng W, Feng X, Cai H, Wang Z, Yuan S, Wang Z (2016) Isotopic evidence for distinct sources of mercury in lake waters and sediments. Chem Geol 426:33–44

    Article  CAS  Google Scholar 

  • Demers J, Blum J, Zak D (2013) Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem Cycles 27:222–238

    Article  CAS  Google Scholar 

  • Ding Z, Wu H, Feng X, Liu J, Liu Y, Yuan Y, Zhang L, Lin G, Jiayong P (2011) Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem. Appl Geochem 26:205–212

    Article  CAS  Google Scholar 

  • Donovan P, Blum J, Singer M, Marvin-DiPasquale M, Tsui M (2016) Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region. Environ Sci Technol 50:1691–1702

    Article  CAS  Google Scholar 

  • Duan D, Lei P, Lan W, Li T, Zhang H, Zhong H, Pan K (2021) Litterfall-derived organic matter enhances mercury methylation in mangrove sediments of South China. Sci Total Environ. 765:142763

    Article  CAS  Google Scholar 

  • Enrico M, Roux G, Marusczak N, Heimbürger L, Claustres A, Fu X, Sun R, Sonke J (2016) Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ. Sci. Technol. 50:2405–2412

    Article  CAS  Google Scholar 

  • EPA, U.S., 2002. Method 1631. Revision E. Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Office of Water.

  • Estrade N, Carignan J, Donard O (2011) Tracing and quantifying anthropogenic mercury sources in soils of northern France using isotopic signatures. Environ Sci Technol 45:1235–1242

    Article  CAS  Google Scholar 

  • Foucher D, Ogrinc N, Hintelmann H (2009) Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ Sci Technol 43:33–39

    Article  CAS  Google Scholar 

  • Fragoso CP, Bernini E, Araújo BF, Almeida MGd, Rezende CEd (2018) Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil. Estuarine, Coastal and Shelf Science 202:30–39

    Article  CAS  Google Scholar 

  • Gantner N, Hintelmann H, Zheng W, Muir D (2009) Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ Sci Technol 43:9148–9154

    Article  CAS  Google Scholar 

  • Gehrke G, Blum J, Meyers P (2009) The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim Cosmochim Acta 73:1651–1665

    Article  CAS  Google Scholar 

  • Gratz L, Keeler G, Blum J, Sherman L (2010) Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ Sci Technol 44:7770

    Article  Google Scholar 

  • Gray J, Pribil M, Metre P, Borrok D, Thapalia A (2013) Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington. USA Appl Geochem 29:1–12

    Article  CAS  Google Scholar 

  • Guédron S, Amouroux D, Tessier E, Grimaldi C, Barre J, Berail S, Perrot V, Grimaldi M (2018) Mercury isotopic fractionation during pedogenesis in a tropical forest soil catena (French Guiana): deciphering the impact of historical goldmining. Environ Sci Technol 52:11573–11582

    Google Scholar 

  • Huang S, Jiang R, Song Q, Zhang Y, Huang Q, Su B, Chen Y, Huo Y, Lin H (2020) Study of mercury transport and transformation in mangrove forests using stable mercury isotopes. Sci. Total Environ. 704:135928

    Article  CAS  Google Scholar 

  • Huang S, Lin K, Yuan D, Gao Y, Sun L (2016) Mercury isotope fractionation during transfer from post-desulfurized seawater to air. Mar Pollut Bull 113:81–86

    Article  CAS  Google Scholar 

  • Huang S, Song Q, Zhang Y, Yuan D, Sun L, Chen Y, Jiang R, Lin H (2019) Application of an isotope binary mixing model for determination of precise mercury isotopic composition in samples with low mercury concentration. Anal Chem 91:7063–7069

    Article  CAS  Google Scholar 

  • Huang S, Sun L, Zhou T, Yuan D, Du B, Sun X (2018) Natural stable isotopic compositions of mercury in aerosols and wet precipitations around a coal-fired power plant in Xiamen, southeast China. Atmos Environ 173:72–80

    Article  CAS  Google Scholar 

  • Jiang R, Huang S, Wang W, Liu Y, Pan Z, Sun X, Lin C (2020) Heavy metal pollution and ecological risk assessment in the Maowei sea mangrove. China. Mar. Pollut. Bull. 161:111816

    Article  CAS  Google Scholar 

  • Jiskra M, Wiederhold J, Skyllberg U, Kronberg R, Hajdas I, Kretzschmar R (2015) Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ Sci Technol 49:7188–7196

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson M, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624

    Article  CAS  Google Scholar 

  • Kritee K, Blum J, Johnson M, Bergquist B, Barkay T (2007) Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms. Environ Sci Technol 41:1889–1895

    Article  CAS  Google Scholar 

  • Kritee K, Motta L, Blum J, Tsui M, Reinfelder J (2017) Photo-microbial visible light-induced magnetic mass independent fractionation of mercury in a marine microalga. ACS Earth Space Chem 2:432–440

    Article  Google Scholar 

  • Kwon S, Blum J, Carvan M, Basu N, Head J, Madenjian C, David S (2012) Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ Sci Technol 46:7534

    Article  Google Scholar 

  • Kwon S, Blum J, Chen C, Meattey D, Mason R (2014) Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the northeastern U.S. Environ Sci Technol 48:10089–10097

    Article  CAS  Google Scholar 

  • Kwon S, Blum J, Chirby M, Chesney E (2013) Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ Toxicol Chem 32:2322–2330

    Article  CAS  Google Scholar 

  • Lei P, Zhong H, Duan D, Pan K (2019) A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? Sci Total Environ 680:140–150

    Article  CAS  Google Scholar 

  • Lepak R, Yin R, Krabbenhoft D, Ogorek J, DeWild J, Holsen T, Hurley J (2015) Use of stable isotope signatures to determine mercury sources in the Great Lakes. Environ Sci Technol Let 2:335–341

    Article  CAS  Google Scholar 

  • Lin H, Peng J, Yuan D, Lu B, Lin K, Huang S (2016) Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system. Environ Pollut 214:822–830

    Article  CAS  Google Scholar 

  • Liu, J., 2008. Transport and transformation of mercury in main mangrove wetlands of China. Master Dissertation, Xiamen University., (in Chinese with English Abstract)

  • Meng B, Li Y, Cui W, Jiang P, Liu G, Wang Y, Richards J, Feng X, Cai Y (2018) Tracing the uptake, transport, and fate of mercury in sawgrass (Cladium jamaicense) in the Florida Everglades using multi-isotope technique. Environ Sci Technol 52:3384–3391

    Article  CAS  Google Scholar 

  • Mil-Homens M, Blum J, Canário J, Caetano M, Costa A, Lebreiro S, Trancoso M, Richter T, Stigter H, Johnson M, Branco V, Cesário R, Mouro F, Mateus M, Boer W, Melo Z (2013) Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chem Geol 336:62–71

    Article  CAS  Google Scholar 

  • Motta LC, Kritee K, Blum JD, Tsz-Ki Tsui M, Reinfelder JR (2020) Mercury isotope fractionation during the photochemical reduction of Hg(II) coordinated with organic ligands. J Phys Chem A 124:2842–2853

    Article  CAS  Google Scholar 

  • Paterson M, Rudd J, Louis V (1998) Increase of total and methylmecury in zooplankton following flooding of peat land reservoir. Environ Sci Technol 32:3869–3874

    Article  Google Scholar 

  • Perrot V, Pastukhov M, Epov V, Husted S, Donard O, Amouroux D (2012) Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ Sci Technol 46:5902–5911

    Article  CAS  Google Scholar 

  • Point D, Sonke J, Day R, Roseneau D, Hobson K, Pol SV, Moors A, Pugh R, Donard O, Becker P (2011) Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems. Nat Geosci 4:188–195

    Article  CAS  Google Scholar 

  • Scanlon T, Riscassi A, Demers J, Camper T, Lee T, Druckenbrod D (2020) Mercury accumulation in tree rings: observed trends in quantity and isotopic composition in Shenandoah National Park Virginia. J Geophys Res Biogeosci 125:005445

    Article  Google Scholar 

  • Schauble E (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Article  CAS  Google Scholar 

  • Sherman L, Blum J, Johnson K, Keeler G, Barres J, Douglas T (2010) Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nat Geosci 3:173–177

    Article  CAS  Google Scholar 

  • Sherman L, Blum J, Keeler G, Demers J, Dvonch J (2012) Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes. Environ Sci Technol 46:382–390

    Article  CAS  Google Scholar 

  • Sonke J, Schäfer J, Chmeleff J, Audry S, Blanc G, Dupré B (2010) Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem Geol 279:90–100

    Article  CAS  Google Scholar 

  • Štrok M, Baya P, Hintelmann H (2015) The mercury isotope composition of Arctic coastal seawater. C.R. Geosci 347:368–376

    Article  Google Scholar 

  • Sun G, Sommar J, Feng X, Lin C, Ge M, Wang W, Yin R, Fu X, Shang L (2016) Mass-dependent and -independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br. Environ Sci Technol 50:9232–9241

    Article  CAS  Google Scholar 

  • Sun L, Lu B, Yuan D, Hao W, Zheng Y (2017) Variations in the isotopic composition of stable mercury isotopes in typical mangrove plants of the Jiulong estuary, SE China. Environ Sci Pollut Res 24:1459–1468

    Article  CAS  Google Scholar 

  • Tang, W., Su, Y., Gao, Y., Zhong, H., 2019. Effects of farming activities on the biogeochemistry of mercury in rice–paddy soil systems. Bull. Environ. Contam. Toxicol.

  • Wang X, Luo J, Yin R, Yuan W, Lin C-J, Sommar J, Feng X, Wang H, Lin C (2017) Using Mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau. Environ Sci Technol 51:801–809

    Article  CAS  Google Scholar 

  • Wang Z, Chen J, Feng X, Hintelmann H, Yuan S, Cai H, Huang Q, Wang S, Wang F (2015) Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China. C.R. Geosci 347:358–367

    Article  Google Scholar 

  • Wiederhold J, Skyllberg U, Drott A, Jiskra M, Jonsson S, Björn E, Bourdon B, Kretzschmar R (2015) Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environ. Sci. Technol. 49:177–185

    Article  CAS  Google Scholar 

  • Woerndle G, Tsui M, Sebestyen S, Blum J, Nie X, Kolka R (2018) New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment. Environ Sci Technol 52:1854–1861

    Article  CAS  Google Scholar 

  • Ye Y, Sun L, Zhou L, Lu C, Yao Y, Chen W (2020) Mercury release flux and its influencing factors from urban tidal flat of young Kandelia candel plantation. Chin J Ecol 39:3817–3828 ((in Chineses with English abstract))

    Google Scholar 

  • Yin R, Feng X, Chen B, Zhang J, Wang W, Li X (2015) Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition. Environ Sci Technol 49:1347–1355

    Article  CAS  Google Scholar 

  • Yin R, Feng X, Hurley J, Krabbenhoft D, Lepak R, Hu R, Zhang Q, Li Z, Bi X (2016a) Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites. Sci Rep 6:18686

    Article  CAS  Google Scholar 

  • Yin R, Feng X, Hurley J, Krabbenhoft D, Lepak R, Kang S, Yang H, Li X (2016b) Historical records of mercury stable isotopes in sediments of Tibetan lakes. Sci Rep 6:23332

    Article  CAS  Google Scholar 

  • Yin R, Feng X, Meng B (2013) Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district. SW China Environ Sci Technol 47:2238–2245

    Article  CAS  Google Scholar 

  • Yuan S, Chen J, Cai H, Yuan W, Wang Z, Huang Q, Liu Y, Wu X (2018a) Sequential samples reveal significant variation of mercury isotope ratios during single rainfall events. Sci Total Environ 624:133–144

    Article  CAS  Google Scholar 

  • Yuan W, Sommar J, Lin C-J, Wang X, Li K, Liu Y, Zhang H, Lu Z, Wu C, Feng X (2018b) Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage. Environ Sci Technol 53:651–660

    Article  Google Scholar 

  • Zdanowicz C, Krümmel E, Poulain A, Yumvihoze E, Chen J, Štrok M, Scheer M, Hintelmann H (2016) Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Global Biogeochem Cycles 30:1324–1347

    Article  CAS  Google Scholar 

  • Zhang H, Yin R, Sapkota A, Feng X, Sommar J, Anderson C, Sapkota A, Fu X, Larssen T (2013) Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci Rep 3:3322–3329

    Article  Google Scholar 

  • Zheng W, Demers J, Lu X, Bergquist B, Anbar A, Blum J, Gu B (2019) Mercury stable isotope fractionation during abiotic dark oxidation in the presence of thiols and natural organic matter. Environ Sci Technol 53:1853–1862

    Article  CAS  Google Scholar 

  • Zheng W, Hintelmann H (2009) Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochim Cosmochim Acta 73:6704–6715

    Article  CAS  Google Scholar 

  • Zheng W, Hintelmann H (2010) Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J Phys Chem A 114:8

    Article  Google Scholar 

  • Zheng W, Obrist D, Weis D, Bergquist B (2016) Mercury isotope compositions across North American forests. Global Biogeochem Cycles 30:1475–1492

    Article  CAS  Google Scholar 

  • Zheng W, Xie Z, Bergquist B (2015) Mercury stable isotopes in ornithogenic deposits as tracers of historical cycling of mercury in Ross Sea. Antarctica Environ Sci Technol 49:7632

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Visiting Fellowship Program of the State Key Laboratory of Marine Environmental Science, Xiamen University (MELRS2011). We would like to thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.

Funding

This research was financed by the National Science Foundation for Young Scientists of China (22006168), the Natural Science Foundation of Fujian Province, China (2020J05074), and the Scientific Research Foundation of the Third Institute of Oceanography, Ministry of Natural Resources (No. 2016045; No. 2016014).

Author information

Authors and Affiliations

Authors

Contributions

SH, major contributor in writing the original draft of the manuscript, analyzed and interpreted the data on samples. QS, YZ, and YC performed the sediments, whereas YH and SL performed the plant tissues. RJ and SH conceptualized this study and acquired the funding. YZ* supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanbiao Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Alexandros Stefanakis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Jiang, R., Song, Q. et al. The Hg behaviors in mangrove ecosystems revealed by Hg stable isotopes: a case study of Maowei mangrove. Environ Sci Pollut Res 29, 25349–25359 (2022). https://doi.org/10.1007/s11356-021-17744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17744-4

Keywords

Navigation