Skip to main content
Log in

Spatial and seasonal dynamics of phosphorous and physicochemical variables in the Negro River Estuary (Argentina): a preliminary approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nutrient discharge into rivers and estuaries and the factors that control it need to be further understood to decrease the risk of harmful algae blooms on these ecosystems. Preliminary seasonal physicochemical parameters at six stations along the Negro River Estuary (Argentina) were studied during 2019 (Austral summer, winter, and spring) with high- and low-frequency data. Three of the stations were mainly estuarine-influenced and three were marine-influenced ones. The concentration of phosphate (P), river discharge, meteorological conditions, seasonality, and physicochemical variables were analyzed. Total phosphorus (TP) showed seasonal variations and was higher than previously reported for the upper watershed in all stations in the warmer months, except for the marine control one. Orthophosphate values were also high compared to previous watershed data and changed independently of TP fluctuations. Changing turbidity, water temperature, pH, and conductivity did not appear to have an essential role in phosphorus variations. An unexplained high TP spike in the late spring sample shows the need for further research in the area, while the seawater mixing with P-rich river water could be acting as a dilution agent at the mouth of the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Administrative boundaries and hydrography features were obtained from Instituto Geográfico Nacional de la República Argentina (IGN) database, and watershed delimitation corresponds to the Subsecretaría de Recursos Hídricos de la Nación Argentina (SRHN) e Instituto Nacional del Agua (INA) database. Topography was represented on the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data (United States Geological Survey, USGS) (Farr et al. 2007)

Fig. 2
Fig. 3

Source: data from the 2015 CCI-LC project (ESA 2017). Hydrography features were obtained from Instituto Geográfico Nacional de la República Argentina (IGN) database

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

PO4 3− :

Orthophosphate

TP:

Total phosphorus

References

  • AIC (2006) Calidad del agua del río Negro años 2001 a 2006. Autoridad Interjurisdiccional de las Cuencas de los Ríos Limay, Neuquén y Negro, Provincia de Río Negro

  • Alvear PA, Rechencq M, Macchi PJ, et al (2007) Composición, distribución y relaciones tróficas de la ictiofauna del río Negro, Patagonia Argentina. In: Ecología Austral, 231–246

  • Bai J, Yu Z, Yu L et al (2019) In-situ organic phosphorus mineralization in sediments in coastal wetlands with different flooding periods in the Yellow River Delta, China. Sci Total Environ 682:417–425. https://doi.org/10.1016/j.scitotenv.2019.05.176

    Article  CAS  Google Scholar 

  • Balls PW (1994) Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine processes on inputs to the North Sea. Estuar Coast Shelf Sci 39:329–352. https://doi.org/10.1006/ecss.1994.1068

    Article  CAS  Google Scholar 

  • Bokuniewicz H (1995) Chapter 3 sedimentary systems of coastal-plain estuaries. In: GME Perillo (ed) Developments in sedimentology, Elsevier, Volume 53, pp 49–67

  • Carstensen J, Duarte CM (2019) Drivers of pH variability in coastal ecosystems. Environ Sci Technol 53:4020–4029. https://doi.org/10.1021/acs.est.8b03655

    Article  CAS  Google Scholar 

  • Chiementon ME, Cogliati MG (2011) Variaciones del uso del suelo en Cipolletti, Provincia de Río Negro, Argentina. Contribuciones Científicas GAEA 23:51–60

  • Coronato A, Mazzoni E, Vazquez M, Coronato F (2017) Patagonia: una síntesis de su geografía física, 1st edn. Universidad Nacional de la Patagonia Austral, Río Gallegos

    Google Scholar 

  • Curetti M (2015) Fertilización en frutales de hoja caduca. Instituto Nacional de Tecnología Agropecuaria Centro Regional Patagonia Norte Estación Experimental Agropecuaria Alto Valle

  • De Aparicio F, Difrieri HA (1958) La Argentina: suma de geografía. Peuser:Buenos Aires

  • Del Río JL, Colado UR, Gaido ES (1991) Estabilidad y dinámica del delta de reflujo de la boca del río Negro. Revista De La Asociación Geológica Argentina 46:325–332

    Google Scholar 

  • Depetris PJ (1980) Hydrochemical aspects of the negro river, patagonia, argentina. Earth Surf Process 5:181–186

    Article  CAS  Google Scholar 

  • Dolph CL, Boardman E, Danesh-Yazdi M et al (2019) Phosphorus transport in intensively managed watersheds. Water Resour Res 55:9148–9172. https://doi.org/10.1029/2018WR024009

    Article  Google Scholar 

  • ESA (2017) Land Cover CCI Product User Guide Version 2. Tech. Rep. maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf

  • Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys. 45 RG2004. https://doi.org/10.1029/2005RG000183

  • Fernandes LL, Kessarkar PM, Suja S et al (2018) Seasonal variations in the water quality of six tropical micro- and mesotidal estuaries along the central west coast of India. Mar Freshw Res 69:1418–1431. https://doi.org/10.1071/MF17181

    Article  CAS  Google Scholar 

  • Filgueira R, Guyondet T, Comeau LA, Grant J (2014) Storm-induced changes in coastal geomorphology control estuarine secondary productivity. Earth’s Future 2:1–6

    Article  Google Scholar 

  • Genchi SA, Carbone ME, Piccolo MC, Perillo ME (2010) Déficit hídrico en San Antonio Oeste, Argentina. Revista De Climatología 10:29–43

    Google Scholar 

  • INDEC, 2010. Censo Nacional de Población, Hogares y Viviendas 2010 - Microdatos y documentación - dat.ar [WWW Document]. URL http://datar.noip.me/dataset/censo-2010-microdatos (Accessed 2.26.20)

  • INDEC, 2001. Censo Nacional de Población, Hogares y Viviendas 2001 - Microdatos y documentación - dat.ar [WWW Document]. URL http://datar.noip.me/dataset/censo-2001-microdatos (Accessed 2.26.20)

  • Iqbal MM, Shoaib M, Agwanda PO (2019) The Response of Pollution Load from Coastal River Waterfront on Red Tides in South Sea. Coas 91:231–235. https://doi.org/10.2112/SI91-047.1

    Article  CAS  Google Scholar 

  • Isla F, Miglioranza K, Ondarza P et al (2010) Sediment and pollutant distribution along the Negro River: Patagonia, Argentina. Int J River Basin Manag 8:319–330. https://doi.org/10.1080/15715124.2010.526122

    Article  Google Scholar 

  • Karl DM, Björkman KM, Dore JE et al (2001) Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res Part II 48:1529–1566

    Article  CAS  Google Scholar 

  • Kovar JL, Pierzynski GM (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters (second edition). Southern Cooperative Series Bulletin, 408

  • Krom MD, Herut B, Mantoura RFC (2004) Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation. Limnol Oceanogr 49:1582–1592

    Article  CAS  Google Scholar 

  • Kunjiek T, Taleb S, Wongsudawan W (2019) Monitoring of the water quality at Bangsaen Beach case study: pink red tide phenomenon. Kaen Kaset = Khon Kaen Agric J 47:1175–1180

    Google Scholar 

  • Kloster, E.E., 2002. Cambios en las características de la población rural económicamente activa en el norte de la Patagonia. Scripta Nova: revista electrónica de geografía y ciencias sociales 6

  • Li H, Liu L, Li M, Zhang X (2013) Effects of pH, temperature, dissolved oxygen, and flow rate on phosphorus release processes at the sediment and water interface in storm sewer. In: Journal of Analytical Methods in Chemistry. https://www.hindawi.com/journals/jamc/2013/104316/. Accessed 26 Feb 2020

  • Longo AC, Moreira S, Perillo GME (2018a) Estudio del impacto de la actividad de los diques de la cuenca del río Negro sobre la evolución geomorfológica de los bancos de sedimentos de su estuario inferior, río Negro, Patagonia Argentina . Puerto Madryn

  • Longo AC, Perillo GME, Moreira S (2018b) Impacto antrópico sobre la geomorfología del estuario del Río Negro, Patagonia, Argentina. Gral. Roca, Argentina

  • Migueles N, Abrameto MA, Macchi PA, et al (2019). Informe del estado ambiental del Río Negro. Universidad Nacional de Río Negro

  • Morello J, Matteucci S, Rodríguez A (2012) Ecorregiones y complejos ecosistémicos argentinos, 1st edn. Orientacion Grafica, Buenos Aires

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nan S, Li J, Zhang L et al (2018) Distribution Characteristics of Phosphorus in the Yarlung Zangbo River Basin. Water 10:913. https://doi.org/10.3390/w10070913

    Article  CAS  Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

    Article  Google Scholar 

  • Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107:563–576

    Article  CAS  Google Scholar 

  • Pedrozo F, Bonetto C (1989) Influence of river regulation on nitrogen and phosphorus mass transport in a large south American river. Regul Rivers: Res Mgmt 4:59–70. https://doi.org/10.1002/rrr.3450040106

    Article  Google Scholar 

  • Perillo GM (1995) Definitions and geomorphologic classifications of estuaries. Geomorphology and sedimentology of estuaries. Dev Sedimentol 53:17–47

    Article  Google Scholar 

  • Perillo GME (2012) Fluvial influence on estuaries and coastal wetlands. River Flow 1:17–25

  • Piccolo MC, Perillo GM (1999) The Argentina estuaries: a review. Estuaries of South America, 101–132

  • Río Negro (2019) Avanza la obra de la nueva planta cloacal en Viedma. In: Diario Río Negro. https://www.rionegro.com.ar/avanza-la-obra-de-la-nueva-planta-cloacal-en-viedma-1116224/. Accessed 3 Mar 2020

  • Rodríguez AB, Holzmann R de L (2017) Características edafoclimáticas los valles irrigados de la Norpatagonia. Instituto Nacional de Tecnología Agropecuaria (INTA)

  • Sastre AV, Santinelli NH, Solís ME, et al (2018) Harmful marine microalgae in coastal waters of Chubut (Patagonia, Argentina). In: Hoffmeyer M., Sabatini M., Brandini F., Calliari D., Santinelli N. (eds) Plankton Ecology of the Southwestern Atlantic. Springer, Cham, pp 495–515

  • Schilling KE, Streeter MT, Seeman A et al (2020) Total phosphorus export from Iowa agricultural watersheds: quantifying the scope and scale of a regional condition. J Hydrol 581:124397. https://doi.org/10.1016/j.jhydrol.2019.124397

    Article  CAS  Google Scholar 

  • Scordo F, Perillo GM, Cintia Piccolo M (2018) Effect of southern climate modes and variations in river discharge on lake surface area in Patagonia. Inland Waters 8:341–355

    Article  Google Scholar 

  • Subsecretaría de Recursos Hídricos (ed) (2004) Estadística hidrológica de la República Argentina. Evarsa, Buenos Aires

  • Syvitski JP, Harvey N, Wolanski E et al (2005) Dynamics of the Coastal Zone. In: Crossland CJ, Kremer HH, Lindeboom HJ,  Marshall Crossland JI, Le Tissier MDA (eds) Coastal Fluxes in the Anthropocene. Global Change — The IGBP Series. Springer, Berlin, Heidelberg, pp 39–94

  • Waylen P, Compagnucci R, Caffera RM (2000) Interannual and interdecadal variability in stream flow from the Argentine Andes. Phys Geogr 21:452–465

    Article  Google Scholar 

  • Zhang B, Ding W, Xu B et al (2020) Spatial characteristics of total phosphorus loads from different sources in the Lancang River Basin. Sci Total Environ 722:137863. https://doi.org/10.1016/j.scitotenv.2020.137863

    Article  CAS  Google Scholar 

  • Zohdi E, Abbaspour M (2019) Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Technol 16:1789–1806. https://doi.org/10.1007/s13762-018-2108-x

    Article  Google Scholar 

  • Zongo SB, Schmitt FG (2011) Scaling properties of pH fluctuations in coastal waters of the English Channel: pH as a turbulent active scalar. Nonlin Processes Geophys 18:829–839. https://doi.org/10.5194/npg-18-829-2011

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the ESA Project and the United States Geological Survey (USGS) for their satellite data provision, the Instituto Geográfico Nacional de la República Argentina (IGN) and Subsecretaría de Recursos Hídricos de la Nación Argentina (SRHN) e Instituto Nacional del Agua (INA) for vector data provision, and personnel of the Prefectura Naval Argentina at the Carmen de Patagones headquarters for providing us with aid and permission to sample at the site.

Funding

This work was funded through an Agencia Nacional de Promoción de Ciencia y Tecnología grant (PICT 2016/373) and partly supported by a grant from Inter-American Institute for Global Change Research (IAI) CRN3038, which is supported by the US National Science Foundation (Grant GEO-1128040), and an IAI-CONICET special grant as well as a grant from the Universidad Nacional del Sur (PGI 24/H081).

Author information

Authors and Affiliations

Authors

Contributions

VLP, idea generation, data processing and interpretation, and writing/reviewing; VYB, idea generation, gathering data and GIS processing, and writing/reviewing; MCM, idea generation, sampling, data processing, and writing/reviewing; ACR, idea generation, sampling, and writing/reviewing; AJ Vitale, idea generation, sampling, data processing, sensor development, and writing/reviewing; GMEP, idea generation, data interpretation, and writing/reviewing; MCP, idea generation and writing/reviewing; DGC, idea generation and writing/reviewing.

Corresponding author

Correspondence to Vanesa L. Perillo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perillo, V.L., Bohn, V.Y., Menéndez, M.C. et al. Spatial and seasonal dynamics of phosphorous and physicochemical variables in the Negro River Estuary (Argentina): a preliminary approach. Environ Sci Pollut Res 29, 15490–15500 (2022). https://doi.org/10.1007/s11356-021-16890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16890-z

Keywords

Navigation