Skip to main content
Log in

Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus Laccaria bicolor

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification. The increasing numbers of available genomic sequences of ectomycorrhizal (ECM) fungi enable deeper insights into the characteristics of MT genes in these fungi that form the most important symbiosis with the host trees in forest ecosystems. The aim of this study was to establish a comprehensive, genome-wide inventory of MT genes from the ECM fungus Laccaria bicolor. Eight MT genes in L. bicolor were cloned, and the expression patterns of their transcripts at various developmental stages based on expressed sequence tag (EST) counts were analyzed. The expression levels of four MTs were significantly increased during symbiosis stages. Quantitative real-time PCR (qRT-PCR) analysis revealed that transcripts of LbMT1 were dominant in free-living mycelia and strongly induced by excessive copper (Cu), cadmium (Cd), and hydrogen peroxide (H2O2). To determine whether these eight MTs functioned as metal chelators, we expressed them in the Cu- and Cd-sensitive yeast mutants, cup1∆ and yap1∆, respectively. All LbMT proteins provided similar levels of Cu(II) or Cd(II) tolerance, but did not affect by H2O2. Our findings provide novel data on the evolution and diversification of fungal MT gene duplicates, a valuable resource for understanding the vast array of biological processes in which these proteins are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Audrey MVA, Jolly S, Howard SJ (2017) Gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization. BMC Genomics 18:1–28

    Google Scholar 

  • Averbeck N, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612

    Article  CAS  Google Scholar 

  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalian metallothioneins: properties and functions. Metallomics. 4:739–750

    Article  CAS  Google Scholar 

  • Bauman JW, Liu J, Liu YP, Klaassen CD (1991) Increase in metallothionein produced by chemicals that induce oxidative stress. Toxicol Appl Pharmacol 110:347–354

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158

    Article  CAS  Google Scholar 

  • Bennetzen (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  Google Scholar 

  • Binz PA, Kägi JH (1999) Metallothionein: molecular evolution and classification. In Metallothionein Iv, Springer. 7-13.

  • Butt TR, Sternberg EJ, Gorman JA, Clark P, Hamer D, Rosenberg M, Crooke ST (1984) Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci 81:3332–3336

    Article  CAS  Google Scholar 

  • Byrne KP, Wolfe KH (2007) Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics. 175:1341–1350

    Article  CAS  Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. JBIC J. Biol Inorg Chem 16:977–989

    Article  CAS  Google Scholar 

  • Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S (2020) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics. 12:1637

    Article  CAS  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Cobine PA, McKay RT, Zangger K, Dameron CT (2004) Armitage, I. M., Solution structure of Cu6 metallothionein from the fungus Neurospora crassa. Eur. J. Biochem. 271(21):4213–4221

    CAS  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    Article  CAS  Google Scholar 

  • Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Longepierre M, Rigal F, Levard C, Chaurand P, Grosser A, Grobelak A, Kacprzak M, Lors C, Richaume A, Vandenbulcke F (2020) Medium-term effects of Ag supplied directly or via sewage sludge to an agricultural soil on Eisenia fetida earthworm and soil microbial communities. Chemosphere. 269:128761

    Article  Google Scholar 

  • Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269(41):25295–25302

  • Divya T, Chandwadkar P, Acharya C, Nmt A (2018) A novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. Aquat Toxicol 199:152–161

    Article  CAS  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E (2004) Genome evolution in yeasts. Nature. 430(6995):35–44

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  Google Scholar 

  • Flores-Monterroso A, Canales J, de la Torre F, Ávila C, Cánovas FM (2013) Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinasterLaccaria bicolor interaction. Planta. 237(6):1637–1650

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 336(6089):1715–1719

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34

    Article  CAS  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza. 17(4):327–335

    Article  Google Scholar 

  • Greer JM, Puetz J, Thomas KR, Capecchi MR (2000) Maintenance of functional equivalence during paralogous Hox gene evolution. Nature. 403(6770):661–665

    Article  CAS  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW (2011) Fueling the future with fungal genomics. Mycology. 2(3):192–209

    Google Scholar 

  • Gu Z, Rifkin SA, White KP, Li WH (2004) Duplicate genes increase gene expression diversity within and between species. Nat Genet 36(6):577–579

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  Google Scholar 

  • Hassinen V, Tervahauta A, Schat H, Kärenlampi S (2011) Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol 13(2):225–232

    Article  CAS  Google Scholar 

  • Hauser-Davis RA, Silva-Junior DR, Linde-Arias AR, Vianna M (2021) Cytosolic and metallothionein-bound hepatic metals and detoxification in a sentinel teleost, Dules auriga, from Southern Rio de Janeiro, Brazil. Biol Trace Elem Res 199:744–752

    Article  Google Scholar 

  • Howe R, Evans R, Ketteridge S (1997) Copper-binding proteins in ectomycorrhizal fungi. New Phytol 135(1):123–131

    Article  CAS  Google Scholar 

  • Hwang CS, Kolattukudy PE (1995) Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. Mol Gen Genet 247(3):282–294

    Article  CAS  Google Scholar 

  • Iturbeespinoza P, Gilmoreno S, Lin W, Calatayud S, Palacios Ò, Capdevila M, Atrian S (2016) The fungus Tremella mesenterica encodes the longest metallothionein currently known: gene, protein and metal binding characterization. PLoS One 11(2):e0148651

    Article  Google Scholar 

  • Jacob C, Courbot M, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576(3):423–427

    Article  CAS  Google Scholar 

  • Jaeckel P, Krauss G, Menge S, Schierhorn A, Rücknagel P, Krauss GJ (2005) Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun 333(1):150–155

    Article  CAS  Google Scholar 

  • Jin SM, Xu C, Li GL, Sun D, Li Y, Wang XW, Liu SK (2017) Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa. Sci Rep 7:17914

    Article  Google Scholar 

  • Johansson T, Le Quéré A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlén M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant-Microbe Interact 17(2):202–215

    Article  Google Scholar 

  • Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology. 164:868–876

    Article  CAS  Google Scholar 

  • Kemppainen M, Duplessis S, Martin F, Pardo AG (2009) RNA silencing in the model mycorrhizal fungus Laccaria bicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus. Environ Microbiol 11(7):1878–1896

    Article  CAS  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415

    Article  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13(3):655

    Article  CAS  Google Scholar 

  • Kumar KS, Dayananda S, Subramanyam C (2005) Copper alone, but not oxidative stress, induces copper–metallothionein gene in Neurospora crassa. FEMS Microbiol. Lett. 242(1):45–50

    CAS  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SL, Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12(1):107

    Article  CAS  Google Scholar 

  • Labbé J, Zhang X, Yin T, Schmutz J, Grimwood J, Martin F, Tuskan GA, Le Tacon F (2008) A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. New Phytol 180(2):316–328

    Article  Google Scholar 

  • Labbe J, Murat C, Morin E, Tuskan GA, Le Tacon F, Martin F (2012) Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. PLoS One 7(8):e40197

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130(1):58–67

    Article  CAS  Google Scholar 

  • Le Croizier G, Lacroix C, Artigaud S, Le Floch S, Raffray J, Penicaud V, Coquillé V, Autier J, Rouget ML, Le Bayon N (2018) Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species. Environ Pollut 236:462–476

    Article  Google Scholar 

  • Liu JH, Zhang YM, Huang DJ, Song G (2005) Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol Cell Biochem 280:139–145

    Article  CAS  Google Scholar 

  • Loebus J, Leitenmaier B, Meissner D, Braha B, Krauss GJ, Dobritzsch D, Freisinger E (2013) The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inogra Biochem 127:253–260

    CAS  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271(21):12275–12280

    Article  CAS  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79(17):4813–4814

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin E, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 452(7183):88–92

    Article  CAS  Google Scholar 

  • Marx D (1969) Influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. Phytopathology.

  • Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucl Acids Res 31(1):374–378

    Article  CAS  Google Scholar 

  • Mierek‐Adamska A, Kotowicz K, Goc A, Boniecka J, Dąbrowska GB (2019) Potential involvement of rapeseed (Brassica napus l.) metallothioneins in the hydrogen peroxide‐induced regulation of seed vigour. J Agron Crop Sci 205:598–607

  • Moleirinho A, Carneiro J, Matthiesen R, Silva RM, Amorim A, Azevedo L (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 6(4):e18487

    Article  CAS  Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71(1):382–391

    Article  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37(9):997–1002

    Article  CAS  Google Scholar 

  • Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 156(1):119–122

    Article  CAS  Google Scholar 

  • Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J (2017) A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 19(7):2577–2587

    Article  CAS  Google Scholar 

  • Nikolaos V, Anne-Ruxandra C, Aoife M (2021) Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. ELIFE. 9:e53500

    Google Scholar 

  • Okuyama MA, Kobayashi Y, Inouhe M, Tohoyama H, Joho M (1999) Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiae. BioMetals. 12(4):307–314

  • Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190(4):916–926

    Article  Google Scholar 

  • Pagani A, Villarreal L, Capdevila M, Atrian S (2007) The Saccharomyces cerevisiae Crs5 metallothionein metal-binding abilities and its role in the response to zinc overload. Mol Microbiol 63(1):256–269

  • Pakdee O, Songnuan W, Panvisavas N, Pokethitiyook P, Yokthongwattana K, Meetam M (2019) Functional characterization of metallothionein-like genes from physcomitrella patens: expression profiling, yeast heterologous expression, and disruption of ppmt1.2a gene. Planta 250(2):427–443

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45–e45. https://doi.org/10.1093/nar/29.9.e45

  • Ramesh G, Podila G, Gay G, Marmeisse R, Reddy M (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75(8):2266–2274

    Article  CAS  Google Scholar 

  • Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology. 160(10):2235–2242

    Article  CAS  Google Scholar 

  • Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R, Fraissinet L (2016) Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ Microbiol 18(8):2446–2454

    Article  CAS  Google Scholar 

  • Rono JK, Wang LL, Wu XC, Cao HW, Zhao YN, Khan IU, Yang ZM (2021) Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere. 265:129136

    Article  CAS  Google Scholar 

  • Ruytinx J, Craciun AR, Verstraelen K, Vangronsveld J, Colpaert JV, Verbruggen N (2011) Transcriptome analysis by cdna-aflp of Suillus luteus Cd-tolerant and Cd-sensitive isolates. Mycorrhiza. 21(3):145–154

    Article  CAS  Google Scholar 

  • Sacky J, Leonhardt T, Borovicka J, Gryndler M, Briksi A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14

    Article  CAS  Google Scholar 

  • Serén N, Glaberman S, Carretero MA, Chiari Y (2014) Molecular evolution and functional divergence of the metallothionein gene family in vertebrates. J Mol Evol 78(3-4):217–233

    Article  Google Scholar 

  • Sigel A, Sigel H, Sigel RK (2009) Metallothioneins and related chelators. R Soc Chem 5.

  • Singh G, Ashby AM (1998) Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Mol Microbiol 30(4):799–806

    Article  CAS  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza. 10(6):281–285

    Article  CAS  Google Scholar 

  • Sutherland DEK, Stillman MJ (2011) The “magic numbers” of metallothionein. Metallomics. 3:444–463

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16(6):1575–1588

    Article  CAS  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulusPisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25(2):181–191

    Article  CAS  Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  • Zhou BR, Yao WJ, Wang SJ, Wang XW, Jiang TB (2014) The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int J Mol Sci 15:10398–10409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. F. Martin (INRA, France) and Prof. A. G. Pardo (University of Quilmes, Argentina) for providing the fungus material Laccaria bicolor S238N. We thank Prof. Dennis J. Thiele (Duke University, USA) for the gift of yeast strains DTY3 and DTY4 and Prof. Shusuke Kuge (Tohoku Pharmaceutical University, Japan) for strains W303B and WYU. We thank Prof. Z. H. Ren (Shandong Agricultural University, China) for the gift of the vector P424-GPD.

Funding

This study was supported by the National Natural Science Foundation of China (31901180; 31800525; 41571307); the China Agriculture Research System of MOF and MARA (CARS-10-B24, CARS-23-A03); China Postdoctoral Science Foundation (2019M651845); and Special Fund Project of Fundamental Scientific Research Funds for Central Universities of Nanjing Agricultural University (KYQN202061).

Author information

Authors and Affiliations

Authors

Contributions

Binhao Liu, Pengcheng Dong, and Zhihang Feng involved in cloning of MTs in L. bicolor, organ-specific expression count and promoter analysis, sequence alignment and phylogenetic analysis, real-time quantitative PCR of L. bicolor MT genes, and yeast complementation assay. Xinzhe Zhang tested the heavy metal tolerance of L. bicolor. Binhao Liu, Pengcheng Dong, Yan Xia, and Zhenguo Shen were four major contributors in writing the manuscript. Liang Shi, Chen Chen, Zhugui Wen, Chunlan Lian, and Yahua Chen provided experimental programs and ideas. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yahua Chen.

Ethics declarations

Ethical approval and consent to participate

Ethics approval and consent to participate was not required for this research.

Consent for publication

The data in this article has been approved by all authors for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Dong, P., Zhang, X. et al. Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus Laccaria bicolor. Environ Sci Pollut Res 29, 14430–14442 (2022). https://doi.org/10.1007/s11356-021-16776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16776-0

Keywords

Navigation